
Rafael André Henriques Ferreira

Bachelor of Computer Science and Engineering

Tracking Context in Conversational Search:
From Utterances to Neural Embeddings

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Dr. João Miguel da Costa Magalhães,
Associate Professor, NOVA University of Lisbon

Co-adviser: Dr. David Semedo,
Assistant Researcher, NOVA University of Lisbon

Examination Committee

Chair: Dr. Vasco Miguel Moreira Amaral, NOVA University of Lisbon
Rapporteur: Dr. Bruno Emanuel da Graça Martins, Instituto Superior Técnico

Member: Dr. João Miguel Costa Magalhães, NOVA University of Lisbon

February, 2021

Tracking Context in Conversational Search:
From Utterances to Neural Embeddings

Copyright © Rafael André Henriques Ferreira, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based on the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Para os meus pais.

Acknowledgements

First and foremost, I would like to express my gratitude to my advisor Dr. João Magalhães

for all of the support, encouragement, and expertise, along with his availability during

the course of this thesis.

Second, I would like to thank my co-advisor, Dr. David Semedo, for all his help and

valuable knowledge, and all of the people in the Nova-Search group for their feedback.

Furthermore, I would like to thank Faculdade de Ciências e Tecnologia da Universi-

dade Nova de Lisboa for not only giving me the tools to complete this thesis but also for

the lessons that it taught me to become a better person and professional. Additionally, I

want to thank the project GoLocal ref. CMUP-ERI/TIC/0046/2014 and all its participants

for funding this project.

I am also thankful to all my friends that accompanied me during not only these five

years but also way far back when we didn’t even know what we were going to do.

Finally, I would like to thank my family for all their support and especially my parents

for all the patience, encouragement, and help during all my life. ,

vii

Abstract

The use of conversational assistants is becoming increasingly more popular among the

general public, pushing the research towards more advanced and sophisticated tech-

niques. Hence, there are currently a number of research opportunities to extend the

comprehension and applicability of these tasks in everyday systems.

These conversational assistants are capable of performing various tasks, such as

chitchatting, internal device functions (e.g., setting up an alarm), and searching for infor-

mation. In the last few years, the interest in conversational search is increasing, not only

because of the generalization of conversational assistants but also because conversational

search is a step forward in allowing a more natural interaction with the system. To build a

system such as this, many components need to work together, since in a conversation, the

importance of context is paramount to retrieve the best answers to the user’s questions.

In this thesis, the focus was on developing a conversational search system that aims

to help people search for information in a natural way. In particular, this system must

be able to understand the context where the question is posed, tracking the current

state of the conversation and detecting mentions to previous questions and answers. We

achieve this by using a context-tracking component based on neural query-rewriting

models. Another crucial aspect of the system is to provide the most relevant answers

given the question and the conversational history. To achieve this objective, we used

state-of-the-art retrieval and re-ranking methods and expanded their architecture to use

the conversational context.

The results obtained with the system developed achieved state-of-the-art when com-

pared to the baselines present in TREC Conversational Assistance Track (CAsT) 2019.

Keywords: Conversational Search, Multi-turn Question Answering, Conversational Con-

text, Information Retrieval, Query Rewriting, Ranking, Natural Language Processing

ix

Resumo

O uso de assistentes conversacionais está a tornar-se cada vez mais popular entre o

público em geral, levando à investigação de técnicas mais avançadas e sofisticadas. Con-

sequentemente, existem atualmente várias oportunidades de investigação para estender

a compreensão e aplicabilidade destas tarefas em sistemas do quotidiano.

Estes assistentes são capazes de efetuar várias tarefas como, por exemplo: ter uma

conversa informal, efetuar funções internas ao dispositivo (e.g. colocar um alarme), e

pesquisar por informação. Nos últimos anos, o interesse em pesquisa conversacional

tem estado a aumentar, não só pela generalização dos assistentes conversacionais, mas

também devido a ser um passo em frente para permitir uma interação mais natural com

o sistema. Para construir um sistema deste tipo, vários componentes têm de trabalhar em

conjunto, uma vez que numa conversa o contexto é da maior importância para recuperar

as melhores respostas para as perguntas do utilizador.

Nesta tese, o foco foi desenvolver um sistema de pesquisa conversacional para ajudar

as pessoas a pesquisar por informação de uma forma natural. Em particular, este sistema

tem de ser capaz de compreender o contexto onde a questão é colocada, fazendo tracking
do estado atual da conversa e detetando menções a perguntas e respostas anteriores. Com

esse objetivo, desenvolvemos um componente de tracking de contexto baseado em mo-

delos neuronais de reescrita de perguntas. Outro aspeto crucial deste sistema é fornecer

as respostas mais relevantes dada uma pergunta e o histórico da conversa. Para alcan-

çar este objetivo, utilizámos modelos do estado-da-arte em recuperação de informação e

re-ranking e expandimos estas arquiteturas de modo a utilizarem o contexto da conversa.

Os resultados obtidos com o sistema desenvolvido atingiram resultados do estado-

da-arte quando comparados às baselines submetidas no TREC Conversational Assistance

Track (CAsT) 2019.

Palavras-chave: Pesquisa Conversacional, Perguntas e Respostas Multi-turn, Contexto da

Conversa, Recuperação de Informação, Reescrita de Perguntas, Ranking, Processamento

de Linguagem Natural

xi

Contents

List of Figures xvii

List of Tables xix

Acronyms xxiii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem Definition and Objective . 2

1.3 The “Anatomy” of a Conversational Search Agent 3

1.4 Contributions . 4

1.5 Document Structure . 5

2 Related Work 7

2.1 Dialogue Systems . 7

2.2 Evaluation of Conversational Agents . 8

2.2.1 Datasets . 8

2.2.2 Evaluation Metrics . 11

2.3 Pre-trained Transformer Models . 13

2.3.1 Autoencoder Models . 15

2.3.2 Autoregressive Models . 17

2.4 Indexing and First-Stage Retrieval . 18

2.4.1 Indexing . 18

2.4.2 First-Stage Retrieval . 20

2.5 Re-ranking Models . 21

2.5.1 Coordinate-Ascent . 21

2.5.2 Deep Relevance Matching Model 21

2.5.3 Kernel-based Matching Models . 23

2.5.4 BERT-based Ranking Models . 24

2.6 Conversation State Tracking . 25

2.6.1 Hierarchical Recurrent Encoder-Decoder 26

2.6.2 Memory Networks . 27

2.6.3 Conversational Query Rewriting 28

xiii

CONTENTS

2.7 Conversational Systems . 29

2.7.1 Conversational Question Answering Systems 29

2.7.2 Conversational Search Systems . 32

2.8 Critical Summary . 33

3 Indexing and First-Stage Retrieval 35

3.1 Introduction . 35

3.2 Indexing and Document/Passage Expansion 36

3.2.1 Document-Passage Parser . 36

3.2.2 Document/Passage Expansion . 37

3.3 Retrieval Models . 37

3.4 Summary . 38

4 Conversational Context as Query Rewriting 41

4.1 Introduction . 41

4.2 Conversational Query Rewriting . 42

4.2.1 Query Rewriting with Previous Queries 42

4.2.2 Coreference Resolution . 43

4.2.3 Conversational Query Rewriting using the Text-To-Text Transfer

Transformer (T5) Model . 44

4.3 Query Expansion With Pseudo-Relevance Feedback 46

4.4 Summary . 47

5 Conversational Context-Aware Neural Ranking 49

5.1 Introduction . 49

5.2 BERT Model for Passage Re-ranking . 50

5.3 Conversational BERT for Passage Re-ranking 51

5.3.1 ConvBERT RNN . 53

5.3.2 ConvBERT MemNet . 55

5.4 Summary . 57

6 Evaluation 59

6.1 TREC CAsT Dataset . 59

6.1.1 Conversation Topics and Relevance Judgments 60

6.1.2 Evaluation Metrics . 61

6.1.3 Dataset Analysis . 61

6.2 Indexing and First-Stage Retrieval Evaluation 64

6.2.1 Document-Passage Parser Results 65

6.2.2 Retrieval Models Results . 66

6.3 Conversational Context as Query Rewriting Evaluation 67

6.3.1 Methods . 67

6.3.2 Query Rewriting Results . 71

xiv

CONTENTS

6.4 Conversational Context-Aware Neural Ranking Evaluation 72

6.4.1 BERT Model for Passage Re-ranking Results 73

6.4.2 The Importance of Fine-tuning . 77

6.4.3 Conversational BERT for Passage Re-ranking 79

6.5 Analysis of Conversational Patterns . 83

6.5.1 Per-Turn results analysis . 84

6.5.2 Per-Question type analysis . 85

6.6 Comparison to TREC CAsT 2019 Baselines 87

6.7 Summary . 89

7 Conclusions and Future Work 91

7.1 Conclusions . 91

7.2 Publications . 92

7.2.1 TREC CAsT 2020 Submission . 92

7.2.2 Papers Submitted . 93

7.3 Impact of Conversational Search in IR . 93

7.4 Future work . 93

Bibliography 95

Appendices 103

A Query and Document Expansion Retrieval Results 103

A.1 Query Expansion Using Pseudo-Relevance Feedback 103

A.2 Query Expansion and Document/Passage Expansion 104

A.2.1 Document/Passage Expansion . 104

B Query and Document Expansion Re-ranking Results 107

B.1 Query Expansion and Document/Passage Expansion 107

xv

List of Figures

1.1 Example conversation between a user and a conversational search system. . . 2

1.2 Overview of a conversational search system architecture. The dashed lines

indicate that the components can retrieve and provide information to the state

tracker. 4

2.1 The Transformer encoder architecture [56]. 14

2.2 BERT input representation for a pair of sequences [12]. 16

2.3 BERT’s architecture for pre-training and fine-tuning [12]. 16

2.4 Architecture of the Deep Relevance Matching Model [19]. 22

2.5 K-NRM (left) and Conv-KNRM (right) architectures. 23

2.6 Architecture of the Multi-Stage Document Ranking BERT [40]. 25

2.7 Computational graph of the HRED architecture for a dialogue composed of

three turns [52]. 26

2.8 Encoding step using PosHAE. QTi/PTi denote question/passage tokens. This

figure can be of training example (q6,p,H
2
6). E4 and E0 are the history embed-

dings for tokens in and not in H2
6 , respectively [46]. 30

2.9 Complete model by Ohsugi et al. [42]. 31

3.1 Simple view of the architecture demonstrating where in the pipeline the doc-

ument indexing and retrieval methods are used. 36

3.2 Indexing and document expansion approaches (top half). Retrieval models

for first-stage retrieval architecture (bottom half). 39

4.1 Simple view of the architecture demonstrating where in the pipeline the query

rewriting and expansion methods are used. 42

4.2 Mentions detected by AllenNLP coreference resolution algorithm [27]. . . . 44

4.3 Indexing and document/passage expansion approaches (top half). Retrieval,

query rewriting and expansion for first-stage retrieval (bottom half). 48

5.1 Simple view of the architecture demonstrating where in the pipeline the re-

ranking model is used. 50

5.2 BERT re-ranker architecture. The input to BERT is the query concatenated

with each one of the passages at a time, using the structure [CLS] q [SEP] p. . 51

xvii

List of Figures

5.3 ConvBERT RNN architecture. The left side of the figure represents the first

turn in the conversation and the right side represents the second turn. The

input to BERT is the query concatenated with each one of the passages at a

time, using the structure [CLS] q [SEP] p. 54

5.4 ConvBERT MemNet architecture in the fourth turn of the conversation, stor-

ing the top query-passage embedding in each turn (3 previous turns in mem-

ory). The input to BERT is the query concatenated with each one of the pas-

sages at a time, using the structure [CLS] q [SEP] p. 56

5.5 Indexing and document/passage expansion approaches (top half). Retrieval,

query rewriting and query expansion and re-ranking (bottom half). 57

6.1 Relevance values scale according to TREC CAsT [10]. 61

6.2 Type of questions according to TREC CAsT [9]. 63

6.3 Results by re-ranking threshold using various queries, with LMD as retrieval

model and BERT BASE model fine-tuned on MS MARCO for re-ranking. . . 76

6.4 Results by re-ranking threshold using various queries, with LMD as retrieval

model and BERT LARGE model fine-tuned on MS MARCO for re-ranking. . 76

6.5 Results by re-ranking threshold using various queries, with LMD as retrieval

model and BERT BASE model not fine-tuned using the next sentence predic-

tion (NSP) scores for re-ranking. 79

6.6 Results by turn depth using various query types, using LMD as the retrieval

model and BERT LARGE re-ranking in the top-1000. 84

6.7 Results by turn depth using various re-ranking models, using as query rewrit-

ing method CorefPronoun+Union in retrieval and T5 in re-ranking. 85

6.8 Results by query type using various query rewriting methods, using LMD as

the retrieval model and BERT LARGE re-ranking in the top-1000. 86

6.9 Results by query type using various re-ranking models, using as query rewrit-

ing method CorefPronoun+Union in retrieval and T5 in re-ranking. 87

6.10 Complete architecture and pipeline of the system developed. In each box it

is possible to apply none or various algorithms. Indexing and document/pas-

sage expansion approaches are done offline (top half). Query rewriting and

expansion, retrieval and re-ranking are performed online (bottom half). . . . 89

xviii

List of Tables

2.1 Comparison of the various datasets. 11

3.1 Effects over a query using the different indexing strategies. 37

3.2 Example of 5 predicted queries for a MS MARCO document using doc2query

and docTTTTTquery. 38

4.1 Conversation example about a specific topic, in this case, the city of Lisbon. . 41

4.2 Example of incorporation of previous turns terms. The history of queries

represents the queries issued so far by the user (turn depth 3). The other rows

represent 3 different approaches of using previous turns to rewrite the current

query. 43

4.3 Results of applying the developed coreference resolution methods. 45

4.4 Example of T5 query rewriting: inputs, targets, and predictions. 46

4.5 RM3 expansion of a query using α=0.2, 20 feedback documents and 10 feed-

back terms. The numbers indicate the weight given to each term. 47

5.1 Example of the input and output of the BERT model in the relevance classi-

fication task for the query “Why is blood red?”. The rank is calculated in the

end by ordering the passages in decreasing order of Prob(1). 52

5.2 Example of the need for conversational context to improve search results. The

passages are adapted from the corresponding Wikipedia articles. 52

6.1 Example of a topic from TREC CAsT 2019 [10]. 60

6.2 TREC CAsT dataset statistical analysis. 62

6.3 Type of query distribution in the evaluation set. 63

6.4 Recall at 1000 for each method of indexing the MS MARCO dataset in the eval-

uation set with 1000 passages retrieved considering only relevance judgments

from MS MARCO using LMD with µ=1000. 65

6.5 Tunable parameters for BM25, LMD and LMJM, their search spaces, and the

parameters that achieved the highest recall in the training set using the Raw
queries. 66

xix

List of Tables

6.6 Results for LMD, LMJM, and BM25 with 1000 passages retrieved with the pa-

rameters that achieved the highest recall using the Raw queries in the training

set. 66

6.7 Summary of the query rewriting techniques developed. 68

6.8 BLEU-4 scores for CANARD dev and test sets and for TREC CAsT using the

annotated resolved queries (Manual). 70

6.9 Example of a conversation from TREC CAsT 2019 training set and the corre-

sponding T5 outputs. 70

6.10 Summary of the query rewriting techniques results using LMD with µ=1000

on the evaluation set. 71

6.11 BERT BASE and BERT LARGE architecture comparison. 74

6.12 Results of retrieval with LMD using a µ=1000 and re-ranking the top 10, 100,

and 1000 passages using BERT BASE and LARGE fine-tuned on MS MARCO. 74

6.13 nDCG@3 comparison between BERT BASE and LARGE with different queries

and re-ranking thresholds. 77

6.14 Results of retrieval on the evaluation set using LMD with µ=1000 and re-

ranking the top 10, 100, and 1000 passages using BERT BASE Not fine-tuned

using the next sentence prediction (NSP) scores as ranking criterion. 78

6.15 Parameters that optimized F1 score in the validation set for the ConvBERT
architectures in the binary conversational relevance classification task. . . . 81

6.16 Results on the evaluation set using LMD (µ=1000) and re-ranking the top-

1000 passages with ConvBERT RNN, MemNet, and BERT BASE fine-tuned (MS

MARCO). 82

6.17 nDCG@3 comparison between the ConvBERT architectures and BERT BASE
with different queries. 83

6.18 Comparison between the developed methods and the TREC CAsT 2019 [10]

baselines on the evaluation set. 88

A.1 Tunable parameters for RM3, the search spaces considered, and the parame-

ters that achieved the highest recall in the training set using the Pref+CorefPronoun
queries. 103

A.2 Results in the evaluation set of the query rewriting techniques using RM3

with parameters α=0.8, number feedback documents=5, and number feedback

terms=15 using LMD with µ=1000. 104

A.3 Results in the evaluation set of the query rewriting methods with RM3 and

passage expansion in the evaluation set using LMD with µ=1000. The passage

expansion models use 5 predicted queries. 106

xx

List of Tables

B.1 Results in the evaluation set of query rewriting with RM3 and docTTTTTquery

passage expansion on the MS MARCO dataset, using LMD with µ=1000 and a

BERT LARGE re-ranker trained on MS MARCO in the top-1000 passages. The

passage expansion model uses 5 predicted queries. 108

xxi

Acronyms

AT Adversarial Training

BERT Bidirectional Encoder Representations from Transformers

BLEU Bilingual Evaluation Understudy

CAR Complex Answer Retrieval

CAsT Conversational Assistance Track

CNN Convolutional Neural Network

ConvBERT Conversational BERT

Conv-KNRM Convolutional Kernel-based Neural Ranking Model

CoQA Conversational Question Answering

DCG Discounted Cumulative Gain

DeepCT Deep Contextualized Term Weighting

DRMM Deep Relevance Matching Model

FFNN Feed-Forward Neural Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HAE History Answer Embedding

HAM History Attention Mechanism

HRED Hierarchical Recurrent Encoder-Decoder

IR Information Retrieval

KD Knowledge Distillation

K-NRM Kernel-based Neural Ranking Model

xxiii

ACRONYMS

KB Knowledge Base

LMD Language Model Dirichlet

LMJM Language Model Jelinek-Mercer

LSTM Long-Short Term Memory

MAP Mean Average Precision

MLD Masked Language Model

MRR Mean Reciprocal Rank

MS MARCO Microsoft Human Generated MAchine Reading COmprehension

Dataset

NDCG Normalized Discounted Cumulative Gain

NIST National Institute of Standards and Technology

NLP Natural Language Processing

NSP Next Sentence Prediction

PosHAE Positional History Answer Embedding

QA Question-Answering

QuAC Question Answering in Context

REST Representational State Transfer

RM Relevance Model

RNN Recurrent Neural Network

RoBERTa Robustly optimized BERT approach

ROUGE Recall Oriented Understudy for Gisting Evaluation

RRF Reciprocal Rank Fusion

SQuAD Stanford Question Answering Dataset

T5 Text-to-Text Transfer Transformer

TPU Tensor Processing Unit

TREC Text REtrieval Conference

WaPo Washington Post

WER Word Error Rate

xxiv

C
h
a
p
t
e
r

1
Introduction

1.1 Context and Motivation

Conversational search systems are an emerging research topic and a step forward from

traditional search engines, allowing a more natural interaction with an intelligent agent.

The potential of these kinds of systems is very high, with applications to various domains,

such as e-commerce, medical question answering, and others. Conversational assistants,

such as Siri, Alexa, and Bixby, have been around for a few years, with major improve-

ments since their creation. However, their ability to support conversational search is up

to this time still limited, not supporting or basing the context on named entity recogni-

tion [5]. These limitations need to be addressed with stronger context-tracking models

that understand the underlying context of the conversation in order to retrieve relevant

information.

Nowadays, the emergent interest in conversational search, as evidenced in the recent

international conferences ECIR 20201, SIGIR 20202, and ACL 20203, as well as the recent

efforts to construct adequate datasets (e.g. TREC CAsT [10]), enables the opportunity

to explore the different facets of the creation and evaluation of conversational search

systems.

We also add that this thesis was developed in the context of the project GoLocal - From
Monitoring Global Data Flows to Recommendation Based on Context4, where one of the goals

is to research robust context-aware natural language processing (NLP) models to work in

open domains.

1https://ecir2020.org/
2https://sigir.org/sigir2020/
3https://acl2020.org/
4https://www.fct.pt/apoios/projectos/consulta/vglobal_projecto.phtml.pt?idProjecto=

139253&idElemConcurso=8677

1

https://ecir2020.org/
https://sigir.org/sigir2020/
https://acl2020.org/
https://www.fct.pt/apoios/projectos/consulta/vglobal_projecto.phtml.pt?idProjecto=139253&idElemConcurso=8677
https://www.fct.pt/apoios/projectos/consulta/vglobal_projecto.phtml.pt?idProjecto=139253&idElemConcurso=8677

CHAPTER 1. INTRODUCTION

1.2 Problem Definition and Objective

Following Jurafsky and Martin [24], conversational systems can be divided into three

main categories:

• Chatbots - The agent tries to mimic a real user, conversing as seamlessly as possible,

with the objective of keeping the user engaged.

• Task Completion - Information is provided to the agent to complete a specific task.

Typically follows pre-determined steps or uses a slot filling pattern to achieve the

goal.

• Question Answering (QA) - The agent returns direct and succinct answers to the

user’s queries, analyzing, and retrieving knowledge from various sources to provide

the best answers to the user.

We depart from chatbots, which are mainly used for chitchat, and diverge from task

completion systems, that generally have a limited scope of actions, by focusing on an open-

domain, retrieval-based, conversational question-answering scenario where the questions

can be about any topic.

What is a physician's assistant?

What are the educational requirements required to become one?
[coreference]

What is a registered nurse? [topic shift]

What is the difference between a RN and a PA?
[context needed to decipher meaning of PA and a NP]

P1 = Is a health care practitioner who practices medicine in
collaboration with or under the (indirect) supervision of a physician.

P2 = In most cases, a physician assistant will need a master’s degree from
an accredited institution.

P3 = A registered nurse is a nurse who has graduated from a nursing
program and met the requirements to obtain a nursing license.

P4 = The RN model draws from the nursing tradition, including the whole
person and wellness. The PA tradition draws more from a medical model.

u1

u3

u5

u2

u4

u6

u8

u7

Figure 1.1: Example conversation between a user and a conversational search system.

2

1.3. THE “ANATOMY” OF A CONVERSATIONAL SEARCH AGENT

This thesis is focused on search and answer selection (QA) in a conversational search

setting. This more challenging scenario departs from typical single-turn QA and search

systems, where the system only needs to answer the current question of the user without

any notion of previous questions/answers. An example of a conversation between a user

and a conversational search system is represented in figure 1.1. As it can see in the ex-

ample, conversational search has various nuances that need to be addressed in order to

provide a relevant response to the user’s queries. In particular, we highlight the use of

state and context from previous questions and answers. This is evidenced in figure 1.1 in

the second question, where the user uses the pronoun “one” to refer to “physician’s assis-

tant” mentioned in the previous query. Another important remark is the system’s ability

to detect context shifts, as seen in question 3, answering the current question, which is

about a different topic. As a final example, question 4 shows a complex task, where the

system needs to resolve the ambiguities in the question, using the conversational context

to resolve the meaning of “RN” and “PA”, which correspond to “registered nurse” and

“physician’s assistant”, respectively. All these subtleties need to be addressed for effective

conversational search, allowing the user to search for information about open topics in a

quick and natural way.

The formal definition of conversational search provided in [10] is: given a series of

natural language utterances (u) about a given topic T:

T = {u1, . . .ui , . . .un}, (1.1)

the task is to identify relevant passages Pi for each turn (user utterance) ui that satis-

fies the information needs in round i given the conversation context, i.e., the previous

conversation turns u1, . . . ,ui−1.

As stated, the conversational context assumes a central role, therefore, the objective

of this thesis is to research methods that can improve the search results by tracking

the context present in (i) the conversation utterances in natural language and (ii) in

the neural embeddings of a conversational neural-state tracker.

1.3 The “Anatomy” of a Conversational Search Agent

To tackle the conversational search task, various challenges need to be addressed to pro-

vide a correct final result. Figure 1.2 represents a simple overview of the system devel-

oped, where the main components are the following:

• Knowledge-Base - The knowledge-base contains all the information that the agent

knows and can use to answer questions. In the context of this thesis, the knowledge-

base corresponds to passages from the Wikipedia and Web.

• Retrieval Model - This component is responsible for the first search on the knowledge-

base (index), comprised of possibly millions of documents. It needs to be fast and

to achieve a high recall to provide the re-ranker with as many relevant documents

3

CHAPTER 1. INTRODUCTION

as possible. This was accomplished using well-established information retrieval

models.

• Re-Ranker - After the initial retrieval step, it is obtained a smaller list of documents,

in the order of a few thousand. These documents are then re-ordered by a more

computationally complex algorithm that aims to put in the top the most relevant

documents, resulting in a better ranking. This was addressed using state-of-the-art

neural models that have an understanding of the interactions between the words in

the query and documents.

• State Tracker - This is the component responsible for handling the context and

history of the conversation. In this component, two approaches can be followed: (i)

query rewriting to convert conversational queries to context-independent queries,

and (ii) extend the previously mentioned re-rankers to create context-based ranking

architectures that use the context present in the conversation.

Query

Answers

Knowledge
Base

Primary Rank

Retrieval Model

Final Rank

Re-Ranker

State Tracker

User

Conversational Search System

Figure 1.2: Overview of a conversational search system architecture. The dashed lines
indicate that the components can retrieve and provide information to the state tracker.

1.4 Contributions

As a result of the work performed in this thesis, we highlight the following contributions:

• A thorough investigation of how the conversational context can be explored as a

query rewriting problem (chapter 4) and as a neural state tracking problem (chap-

ter 5).

• We propose two new architectures based on RNNs [2, 20] and Memory Networks [54]

that bring state-of-the-art neural re-ranking models to the conversational search do-

main (chapter 5).

4

1.5. DOCUMENT STRUCTURE

• A systematic and highly comprehensive experimental evaluation of each of the

conversational search system components (chapter 6).

• The methods developed achieved state-of-the-art results when compared to the

baselines submitted to TREC CAsT 2019 [10] (chapter 6).

In terms of scientific dissemination, the following submissions were done in the con-

text of this thesis:

• Submission to TREC CAsT 2020 [9] with the name: “NOVA at TREC 2020 Conver-
sational Assistance Track”, and authors: Rafael Ferreira, David Semedo, and João

Magalhães.

• Full paper accepted in ECIR 20215 titled: “Open-Domain Conversational Search
Assistant with Transformers” [16], and authors: Rafael Ferreira, Mariana Leite, David

Semedo, and João Magalhães.

• Submission under review: “Knowledge-driven Answer Generation for Conversational
Search”, with authors: Mariana Leite, Rafael Ferreira, David Semedo, and João

Magalhães.

1.5 Document Structure

The remaining of the document is divided in the following chapters:

• Chapter 2, Related Work - Introduces the concepts related to conversational search

and presents a discussion of the techniques, models, and algorithms currently used

by the scientific community.

• Chapter 3, Indexing and First-Stage Retrieval - Presents traditional indexing strate-

gies and information retrieval models, as well as recent neural document expansion

techniques.

• Chapter 4, Conversational Context as Query Rewriting - Describes various query

rewriting techniques that use the conversational context to convert a conversational

query into a context-independent query.

• Chapter 5, Conversational Context-Aware Neural Ranking - Details the developed

neural ranking models and the extensions performed to them to make use of the

conversational context in order to re-rank the results retrieved by a typical informa-

tion retrieval model.

• Chapter 6, Evaluation - Provides an extensive evaluation and discussion of the

results obtained by the various components of the system in a conversational search

scenario.
5https://www.ecir2021.eu/accepted-papers/

5

CHAPTER 1. INTRODUCTION

• Chapter 7, Conclusions and Future Work - Presents the conclusions of this thesis

and avenues for future work.

6

C
h
a
p
t
e
r

2
Related Work

In this chapter, we present the essential concepts related to conversational search and the

current methodologies and algorithms used in the various components of such systems.

In the first section, we introduce the concept of dialogue systems, and in the second, we

present the common datasets and evaluation metrics. The third section introduces the

current state-of-the-art Transformer models used to compute contextual word embed-

dings. In the fourth, we introduce indexing techniques and methods used to perform

the first-stage retrieval step. The fifth section introduces various re-ranking algorithms,

followed by the sixth section, where we present conversational state tracking methods.

The subsequent section introduces several conversational systems, and the final section

shows a critical summary of this chapter.

2.1 Dialogue Systems

The objective of a dialogue system is to converse with the user. We can categorize these

systems into three main categories: chatbots, task completion, and question answering

systems [24].

Chatbots are one of the simplest forms of dialogue systems. There exist two categories of

chatbots: rule-based and corpus-based. A rule-based chatbot is characterized by pattern-

action rules, meaning that it uncovers patterns in the utterance and applies specific pre-

defined actions. A corpus-based chatbot, instead of hand-built rules, uses large amounts

of data to derive its answers.

Task completion dialogue systems, on the other hand, have the goal of helping the user

complete a specific task. These types of systems can extract from a sentence what is

called a frame that represents the types of interactions the system allows. Each frame is

7

CHAPTER 2. RELATED WORK

composed of a collection of slots, where each can take a specific value. The objective of

the system is to determine the intent of the user (frame to use) and then fill the slots. The

more recent task-based dialogue systems use dialogue acts [24], where the utterances of

a user or agent are considered actions that can change the state of both the user and the

system, and so, the state of the conversation. These systems have a more advanced frame-

based architecture called dialogue-state [24]. This architecture uses natural language

understanding (NLU) to extract slot fillers, a dialogue state tracker to monitor the current

state, and a dialogue policy to decide which action to execute next.

Question answering dialogue systems have the goal of providing concise answers to

typically factoid questions. From an architectural point of view, these systems can be

of two types [24]: Knowledge-based (KB) or Information Retrieval (IR) based. In a KB

architecture, the system answers the natural language questions by mapping them to a

query on a structured database (the knowledge base). The most simple formulation for

this is converting a query to a triple, such as (subject, predicate, object), and then perform

the query over the database. With an IR-based architecture, the goal is to retrieve the

answer to a question from a collection of documents. To achieve this, it can first apply

a query formulation task, creating a list of tokens to send to the information retrieval

system. After the query formulation step, the system performs the document/passage

retrieval, resulting in a set of documents/passages ranked by their relevance to the query.

This thesis, in particular, focuses on a retrieval-based architecture for conversational

search. Conversational search differentiates itself from simple QA because of its multi-

turn setting, where various queries are performed in a sequence with the model retrieving

from a large collection, a ranked list of answers in each turn.

Ethics also need to be considered when designing these types of systems. It is important

to understand that the data being used can include certain biases, so a careful evaluation

of the data and the implications of the system being deployed needs to be conducted. An

illustrative example is Microsoft’s Tay chatbot. This chatbot was shutdown in less than

a day because it began posting messages of inappropriate content due to learning with

“toxic” user interactions in social media [35].

2.2 Evaluation of Conversational Agents

2.2.1 Datasets

Datasets are one of the most important aspects when evaluating and building a con-

versational search agent. The recent advances made in this area are largely due to the

proliferation and availability of these large-scale datasets. Each one has its own set of

characteristics, ranging from the type of text it has (articles, news, conversations, fictional,

and narrative) to the number of speakers and the way the data is collected. Although

being large-scale, these datasets must also have quality and be aligned with the task at

8

2.2. EVALUATION OF CONVERSATIONAL AGENTS

hand because having a large dataset that doesn’t fit the specifications of our task is not as

useful.

In this section, we will explain the content, scale, way the data is collected, and the

usefulness of some of the more relevant datasets used in retrieval and conversational

settings.

2.2.1.1 Retrieval Datasets

A retrieval dataset is characterized by a set of queries, along with a typically large set of

documents/passages from which to retrieve an answer.

The TREC Washington Post Corpus (WaPo) [22] is a dataset provided by the American

News Agency Washington Post. This dataset contains 608.108 news articles and blog

posts that range from a period of 5 years, from January 2012 to August 2017. The articles

are available in JSON format and were broken into multiple paragraphs, each one with a

unique identifier.

TREC CAR (Complex Answer Retrieval) [13] is a dataset that contains a corpus of over

20 million paragraphs collected from a 2016 snapshot of Wikipedia. From this snapshot,

the researchers discarded templates, talk pages, portals, disambiguation, redirect, and

category pages, as well as articles with categories that indicate people, organizations,

music, books, films, events, and lists. The paragraphs were then deduplicated and given

a unique identifier to create a passage ranking task. The task of passage raking is defined

as given a topic outline (query), which is defined as the concatenation of a Wikipedia

article title with the title of one of its sections, retrieve a ranking of relevant passages,

where the ground truth are the actual paragraphs of that section.

The MS MARCO [36] dataset or Human Generated MAchine Reading COmprehension

Dataset is a dataset comprised of more than 1 million questions where each one has a

human-generated answer. The questions are sampled from Bing’s search logs, filtering

out the non-question queries. These questions are not all well-formed, and so they can

be ambiguous or contain typographical and other errors, requiring systems to be robust

enough to understand and answer these questions. After having the set of queries, Bing’s

large-scale web index is used to retrieve relevant passages, totaling 8.8 million passages.

In the final step, human editors annotate passages that contain useful information and

compose well-formed natural language answers. This dataset is particularly useful to

benchmark many machine reading comprehension problems and question-answering

models.

The TREC Conversational Assistance Track 2019 (CAsT) [10] is also a retrieval-based

dataset, but contrary to the ones presented before, it is focused on conversational passage

retrieval. This dataset is the most aligned with our task, and we perform an extensive

analysis in section 6.1. In summary, this dataset contains 80 conversational topics, where

each one has, on average, 10 conversational questions (turns) about a specific topic. The

9

CHAPTER 2. RELATED WORK

passage collection is composed of the datasets WaPo, TREC CAR, and MS MARCO to-

taling over 47 million documents. This retrieval task is more challenging than simple

retrieval because of the need to track the context of the conversation to retrieve relevant

information.

2.2.1.2 Question-Answering Datasets

When referencing question-answering (QA) datasets, we consider datasets where the aim

is to extract from a single passage or document (no retrieval required) a span that answers

a particular question.

The Stanford Question Answering Dataset, or SQuAD [49] for short, is a dataset that

consists of questions constructed by crowdsourced workers on a set of Wikipedia articles.

The answers to every question are a passage or span of text, which makes them easier to

evaluate than free-form answers. Version 1.1 of the dataset contains more than 100.000

question-answer pairs on 536 articles. To collect the data, researchers used three steps.

The passage curation step was used to retrieve high-quality articles. The question-answer

collection step used crowdsourced workers from Amazon Mechanical Turk. In this step,

each worker was tasked to ask 5 questions on the content of the paragraph and highlight

the answers in the given paragraph. The final step is creating an additional answer

collection to evaluate human performance. In this step, the workers were shown the

questions and the paragraphs of an article and were told to select the shortest span in the

paragraph that answered the question.

The newest version of SQuaD is the 2.0 [48]. In this version, the original dataset was

augmented with 50.000 unanswerable questions, also written by crowdsourced workers,

to look similar to answerable questions.

Since our focus is on a conversational task, where the user can make many questions

about a topic in a context-dependent way, we also describe the conversational QA datasets

QuAC [3] and CoQA [50].

The QuAC dataset [3] (Question Answering in Context) tries to mimic a real conversa-

tion, containing 14k crowdsourced dialogues with a total of 100k QA pairs. The dataset

was collected in an interactive way, where two crowdsource workers play the roles of

“student” and “teacher”. The “student” poses a sequence of free-form questions about a

Wikipedia article, where the “student” only sees the section’s title and the first paragraph

of the main article, not knowing the answers to the question prior asking them. The task

of the “teacher” is to provide a span that answers the question, in case it exists. The

“teacher” has access to the entire Wikipedia article, and after each question must provide

the “student” with a list of dialog acts. There exist three dialog acts: (1) continuation

(follow up, maybe follow up, or do not follow up), (2) affirmation (yes, no, or neither), and

(3) answerability (answerable or no answer). These dialog acts are used so that “teachers”

can guide the “students” to the more important aspects of the article. The dialog ends

if 12 questions are answered, one of the partners ends the interaction, or more than two

10

2.2. EVALUATION OF CONVERSATIONAL AGENTS

unanswerable questions were asked.

CoQA [50] is another conversational question answering dataset. This dataset con-

tains 127k question-answer pairs (average 15 turns), obtained from 8k conversations

about text passages from diverse domains. These domains include children’s stories, liter-

ature, middle and high school English exams, news, Wikipedia, Reddit, and science. The

data collection process is similar to QuAC using crowdsourced workers, where one anno-

tator takes the role of the questioner, and the other takes the role of the answerer. The

questioner’s role is to ask natural language questions. The answerer’s role is to answer

the questions and highlight the rationales (span of text supporting the answer). Contrary

to QuAC, in CoQA, the questioner has access to the text where the answers are coming

from.

In table 2.1 is presented a summary of the characteristics of the datasets analyzed. In

particular, we emphasize the TREC CAsT dataset [10] for being the only one combining

both retrieval and conversational data in a single dataset.

Table 2.1: Comparison of the various datasets.

Dataset Retrieval Conversational
Dialog

Acts
Unanswerable

WaPo [22] 3 7 7 3

TREC CAR [13] 3 7 7 3

MS MARCO [36] 3 7 7 3

TREC CAsT [10] 3 3 7 7

SQuAD 1.1 [49] 7 7 7 7

SQuAD 2.0 [48] 7 7 7 3

QuAC [3] 7 3 3 3

CoQA [50] 7 3 7 3

2.2.2 Evaluation Metrics

Having metrics is important to measure the performance of the system and to compare

it with others. In this section, we describe the most common metrics used to evaluate

information retrieval and natural language generation systems.

Recall represents the fraction of documents that are relevant to the query that were

retrieved successfully. So, a recall of 1 means that all documents that are considered

relevant were retrieved. If the recall is 0, none of the documents retrieved is relevant to

the query. The equation to calculate recall is equation 2.1.

recall =
|{relevant docs} ∩ {retrieved docs}|

|{relevant docs}|
. (2.1)

Precision can be viewed as the fraction of documents retrieved that are relevant to the

user’s information need. Also used is P@K , which represents the precision on the top K

11

CHAPTER 2. RELATED WORK

results. A P@K of 1 tells us that all the documents in the top K are considered relevant, a

precision of 0 tells us the opposite. The equation to calculate precision is equation 2.2.

precision =
|{relevant docs} ∩ {retrieved docs}|

|{retrieved docs}|
. (2.2)

The F1 Score represents the harmonic mean of precision and recall, so an F1 score of

1 indicates that the system achieved maximum precision and recall. The formula to

calculate the F1 score is equation 2.3.

F1 = 2×
precision× recall
precision+ recall

. (2.3)

Discounted Cumulative Gain (DCG) is a metric used to penalize when a highly relevant

document is placed lower on a list of ranked results. The penalty is a graded relevance

value that is reduced logarithmically, proportional to the position of the result (i), as

presented in equation 2.4. Also used is the normalized DCG (nDCG), since search result

lists may have different lengths depending on the query. This can be achieved by sorting

all relevant documents in the corpus by their relative relevance, and thus produce the

maximum possible DCG through position p called Ideal DCG (IDCG). The nDCG can be

computed using equation 2.5.

DCGp =
p∑
i=1

2reli − 1
log2(i + 1)

, (2.4) nDCGp =
DCGp
IDCGp

. (2.5)

Mean Average Precision (MAP) for a set of queries is the mean of the average precision

scores for each query. It is represented by equation 2.6, where Q represents the number

of queries.

MAP =

∑Q
q=1AveP (q)

Q
. (2.6)

Mean Reciprocal Rank (MRR) is used to calculate the reciprocal of the rank at which the

first relevant document was retrieved. The reciprocal rank is 1 if the first relevant docu-

ment was retrieved in rank 1, 0.5 if retrieved in rank 2, and so on, following equation 2.7.

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

. (2.7)

BLEU (Bilingual Evaluation Understudy) [43] is an automatic machine translation evalu-

ation metric that is used to evaluate text generation. BLEU calculates the correspondence

between the system’s output and a reference output. BLEU values range from 0 to 1,

being 1 the maximum similarity between the system output and the reference output.

12

2.3. PRE-TRAINED TRANSFORMER MODELS

ROUGE (Recall Oriented Understudy for Gisting Evaluation) [29] appears as a modifica-

tion of BLEU that works in the opposite way, focusing on recall. It compares how many

n-grams in the reference output appear in the system’s output.

Word Perplexity is often used for probabilistic language modeling. It represents the

inverse probability of the test set, normalized by the number of words, meaning that a

lower perplexity results in a better model [24]. Equation 2.8 represents this metric, where

w represents a word, and N is the number of words in the dataset.

P P (W) = P (w1w2 . . .wN)(− 1
N) = N

√
1

P (w1w2 . . .wN)
. (2.8)

Word Error Rate (WER) represents the number of words in the output that the model

has predicted incorrectly, divided by the total number of words in the reference output.

The equation for WER is 2.9, where S, D, and I are the number of substitutions, deletions,

and insertions that the model predicted, and N is the number of words in the reference

output.

WER =
S +D + I

N
. (2.9)

2.3 Pre-trained Transformer Models

Embedding is the technique where words or sentences from a vocabulary are mapped

to a vector of real numbers. These vectors provide a way of performing calculations

using words, being able to, for example, calculate the similarity between two words or

perform peculiar calculations such as, vec(“Madrid′′) − vec(“Spain′′) + vec(“France′′) ≈
vec(“P aris′′), where vec() is a function that transforms the word into its vector represen-

tation [34].

A Recurrent Neural Network (RNN) is a generalization of a feed-forward neural net-

work that has a notion of “memory”. It is called recurrent because it applies the same

function to all inputs, but the output of the current input is dependent on the previous

computation. Considering these characteristics, RNNs can be used to generate sentence

embeddings where a text is viewed as a sequence of words. To generate these embed-

dings, the text of the sentence is mapped to a dense, low-dimensional semantic vector

by sequentially processing each word and mapping the subsequence up to that word

into another vector that is viewed as the hidden state [17]. An RNN and its extensions

based on gated RNNs, such as LSTMs (Long-Short Term Memory) [20] and GRUs (Gated

Recurrent Unit) [2], are often used to allow persistence. They use the hidden state to

remember some information about the full sequence. With this hidden state, an RNN can

learn from the past, but in most cases, this only works correctly if the gap between the

relevant information and the place where it is needed is small.

Although useful, RNNs do not capture sufficient context to handle complex Natural

Language Processing (NLP) tasks [59]. So, a newer generation of models pre-trained in

13

CHAPTER 2. RELATED WORK

a large corpus, such as BERT [12] and others [31, 47, 65] are now used. These types

of models are capable of not only generating sentence embeddings but also capture the

context of the words in the sentence, being able to, for example, disambiguate the same

word in different contexts, e.g., a “bat” can be a piece of sporting equipment used in

baseball or a winged mammal.

The bulk of these new pre-trained models are based on the Transformer architecture,

first presented in [56]. The Transformer can handle sequential data, such as text, but

contrary to what happens in the RNNs, the Transformer does not require a sequence to

be processed in order, allowing for parallelization and embeddings conditioned by all

the words in the sentence. Adding to this, the Transformer also addresses the mentioned

limitations of the RNNs by using an attention mechanism. This mechanism can access

all the tokens in the input and attribute a weight (a measure of relevance) to each one,

providing a better representation for each token because this representation is based on

all the tokens in the input and not on a hidden state like an RNN. To be more specific,

the Transformer uses an encoder-decoder architecture, however, our main interest is in

the encoder component as represented in Figure 2.1.

Figure 2.1: The Transformer encoder architecture [56].

The encoder consists of three main components: the attention mechanism, layer nor-

malization, and a feed-forward neural network, where the most important and innovative

part is the attention mechanism. In this component, the input is a sentence from which

attention weights are calculated for every token. As seen in Figure 2.1, the attention

module receives three inputs, Value (V), Key (K), and Query (Q), and learns three weight

matrices WV , WK , and WQ. Each token in the input sentence is then multiplied by these

matrices, resulting in three corresponding vectors per token. To calculate the attention

weights, the dot product of the query and key vectors for every token is used, divided by

the square root of the size of the key vector (dk) to stabilize the gradients during training.

This representation is then passed to a softmax function to obtain the final weights.

14

2.3. PRE-TRAINED TRANSFORMER MODELS

In summary, this procedure is represented in equation 2.10:

Attention(Q,K,V) = sof tmax(
QKT√
dk

)V , (2.10)

So, the multi-head attention component represented in Figure 2.1 is composed of multiple

different sets of the previously mentioned matrices that the researchers showed focus on

different aspects of the input [56]. Here we presented just a short description of the

encoder architecture, for more detail, refer to the original paper [56].

2.3.1 Autoencoder Models

Autoencoder language models are characterized by their ability to reconstruct the original

data from corrupted input. An example of these types of models is the Bidirectional

Encoder Representations from Transformers or BERT [12] for short. This model was first

presented by Devlin et al. [12] as a new language representation model. This model

was designed to pre-train deep bidirectional representations of unlabelled text by jointly

conditioning on the left and right context in all layers, meaning that a word is conditioned

on the words to its left and right. Because of this characteristic, this model can work on

various tasks, such as question answering and language inference, without significant

changes in the architecture.

BERT implements a multi-layer bidirectional architecture of transformer encoders,

following the principles and ideas first presented in [56], especially in the attention

components. In this architecture, the number of layers is denoted as L, the hidden size

as H, and the number of self-attention layers as A. The most used models are the BERT

BASE (L=12, H=768, A=12, Total Parameters=110 Million), and BERT LARGE (L=24,

H=1024, A=16, Total Parameters=340 Million).

The input representation can be a single sentence or a pair of sentences like a question-

answer pair. The first token of every sequence is a special token called [CLS] (classifi-

cation) that aims to be a representation of the entire sentence. To use sentence pairs,

these are packed together into a sequence with another special token, [SEP] (separator),

in between, along with the addition of a learned embedding to every token, indicating if

it belongs to sentence A or B (segment embeddings). On top of those embeddings, a posi-

tion embedding is used that indicates the absolute position of the token in the sequence.

So, denoting the input embeddings as E, the final input representation for a token is the

sum of the token, segment, and position embeddings, as represented in Figure 2.2.

Regarding the training of the model, there are two phases: the pre-training phase and

the fine-tuning phase that can be seen in Figure 2.3. In the pre-training phase, the model

is trained on unlabelled data over two unsupervised tasks:

• Masked Language Model (MLD) – to train the deep bidirectional representation,

15% of the input tokens are masked at random and then predicted [12] (denoising

objective). To mask the tokens a special symbol [MASK] is used 80% of the time,

15

CHAPTER 2. RELATED WORK

Figure 2.2: BERT input representation for a pair of sequences [12].

Figure 2.3: BERT’s architecture for pre-training and fine-tuning [12].

but this creates a mismatch between training and fine-tuning, so the researchers

also replace the tokens with a random token (10%) or by the actual input token

(10%).

• Next Sentence Prediction (NSP) - researchers pre-trained a binarized next sen-

tence prediction task [12]. Meaning that when choosing the sentences A and B for

each pre-training example, 50% of the time B is the sentence that follows A, and

50% of the time B is a random sentence from the corpus. The aim of the model is

to classify if the second input sentence is, in fact, the sentence that follows the first

one, using the embedding generated by the model for the [CLS] token.

In the fine-tuning phase, the model is initialized with the pre-trained parameters, and

then all of them are fine-tuned using labeled data from downstream tasks. The self-

attention mechanism in the Transformer grants BERT the ability to model these down-

stream tasks. This allows performing simple modifications to model different tasks, by

putting the inputs and outputs into BERT and fine-tuning all the parameters end-to-end.

When compared to pre-training, the fine-tuning task is relatively inexpensive.

In Liu et al. [31] is presented a revised version of the original BERT model called Ro-

bustly optimized BERT approach or RoBERTa for short. The main difference in this model

resides in the training phase. In RoBERTa, 160 GB of data are used for training, while

the original BERT used only 16 GB. During training, the masked language model used in

RoBERTa differentiates itself from BERT by using a dynamic mask that is generated every

time a sequence is fed to the model, while in BERT the mask is static, using the same

mask for each training instance in every epoch. In RoBERTa the next sentence prediction

16

2.3. PRE-TRAINED TRANSFORMER MODELS

task was removed, so each input is packed with full sentences sampled contiguously from

one or more documents (total length <= 512 tokens), allowing inputs to cross document

boundaries if needed. Another modification to the original training algorithm was the

use of larger mini-bathes and learning rates, achieving an improvement in perplexity for

the masked language modeling objective and end-task accuracy, making it also easier to

parallelize via distributed data-parallel training [31]. The vocabulary used in this work

contains 50k sub-word units, without any additional preprocessing or tokenization of the

input. In comparison, BERT uses a vocabulary of 30k sub-words. All of these changes

applied during training allowed the RoBERTa model to achieve state-of-the-art results in

various tasks, surpassing the equivalent BERT model in most tasks [31].

In a more recent paper [47] is presented a study on the transfer learning techniques

(large pre-train models), a new model called Text-to-Text Transfer Transformer (T5 for

short), and a new dataset named Colossal Clean Crawled Corpus (C4) that was used

to pre-train this model. Our interest, in particular, is on the T5 model. This model

is based on the encoder-decoder architecture [56] and achieved state-of-the-art results

in various tasks. The model has a simple input and output structure that uses strings,

being considered a text-to-text model. The pre-training task is similar to BERT using a

denoising objective, but the amount of data used to train the model is much larger thanks

to the C4 dataset (803 GB). By using this architecture, the model can be used in a variety

of tasks such as machine translation, question answering, and classification. The model

also exists in various sizes (number of parameters), with the largest one having 11 billion

parameters, requiring modern accelerators, such as TPUs to train. To be comparable to

BERT, T5 also has two versions called BASE and LARGE with a similar size to BERT.

2.3.2 Autoregressive Models

A problem with BERT is that there exists a difference between the training step and the

fine-tuning step. This happens because the training step includes the masking of parts of

the input using the [MASK] token that does not appear in the fine-tuning step. Another

limitation of BERT is that it assumes independence between the masked tokens, although

this is not always the case.

Autoregressive language modeling aims to estimate the probability distribution of

a text using an autoregressive model. Typically these types of models are only trained

to encode uni-directional context (either forward or backward), while models like BERT

are built to model bi-directionality. However, in [65], a new model called XLNet is cre-

ated that resolves the aforementioned limitations of the BERT model, using a generalized

autoregressive method that can encode bi-directional context. In particular, the bidi-

rectionality is achieved by maximizing the log-likelihood of a sequence, by taking into

account all possible permutations of the factorization order. This technique is called Per-

mutation Language Modeling and is the innovation that allows the model to capture the

bidirectional context. Yang et al. [65] compared XLNet to an equivalent version of BERT

17

CHAPTER 2. RELATED WORK

and showed that XLNet improves the results in most tasks, achieving state-of-the-art in

some of them.

2.4 Indexing and First-Stage Retrieval

2.4.1 Indexing

Indexing is the process of creating the pool of data, from which the first-stage retrieval

model will search for the relevant information given a query.

2.4.1.1 Preprocessing in Natural Language

Preprocessing data is a simple modification that can often have a significant impact on

the results obtained. Some of the most notable methods are the following:

Capitalization is the technique that involves changing the capitalization of words. Typi-

cally an approach of reducing all the words to lower case is used. This approach increases

the number of matches, but it also neglects some words that may be confused if we use

the same case, like in the case of “US” (United States), that is transformed into “us”.

Tokenization is the process of splitting text into meaningful parts, such as splitting text

into sentences, or sentences into words. After the tokenization, an algorithm can be

applied to each unit. The most typical tokenization is the punctuation and white-space

tokenizer, but more complex strategies can also be applied.

Stop words are the most common words in a language or words that do not provide

relevant information and so can be filtered before processing the text. There are various

lists of stop words, so different lists can be used that may affect the quality of the results.

Dai and Callan [7] showed that stop word removal improves results of traditional methods

based on term frequency (e.g., BM25 [51]), but that models like BERT [12] achieve better

results without stop word removal.

Stemming and Lemmatization. Stemming is the process of reducing inflected or derived

words to their root form or word stem. For example, the words “likes”, “liked”, and “lik-

ing” are stemmed to the word “like”. Lemmatization has a similar function as stemming

but can capture more complex examples by using a dictionary to lookup word stems. For

example, “good” is the lemma of the word “better”. These techniques can also increase

the number of matches but at the cost of the precision of the terms.

2.4.1.2 Index Expansion

One of the problems with traditional indices is that the term frequency is a typical method

to determine the importance of a term in a document (tf) or query (qtf). This simplistic

approach might not be enough if the distribution of the terms is flat or the sentence

is short, making it difficult to assess whether a term is relevant to the meaning of the

18

2.4. INDEXING AND FIRST-STAGE RETRIEVAL

text. Index expansion tries to solve this by expanding the documents in the index with

words or sentences that can make the document more easily discoverable by retrieval

algorithms. This method is used to improve retrieval efficiency without significantly

increasing retrieval time.

Dai and Callan [6] propose a Deep Contextualized Term Weighting (DeepCT) frame-

work that learns to map BERT’s contextualized text representations to context-aware

term weights for passages that can be used by typical first-stage retrieval algorithms. So,

DeepCT can be used to create a query-independent index that stores the weights of the

terms in passage-long documents. The weights of the terms are obtained by training the

BERT model to predict if a term in the passage is likely to appear in a relevant query.

The main difference between DeepCT’s index and a typical inverted index is that the

term weights are based on the term frequency generated by DeepCT. This process is

performed offline, so it does not add any latency to the system. The experimental results

showed that DeepCT improves the accuracy of first-stage retrieval algorithms and the

accuracy/efficiency tradeoff for later-stage re-rankers, achieving a better accuracy with

fewer candidate documents. In summary, the main advantage of DeepCT over classic

term weighting approaches is that it finds the most central words, regardless of the term

frequency. A problem with this approach is that non-central words that may be frequent

are suppressed.

Another possible approach to increase retrieval efficiency, instead of repeating the

central terms like in DeepCT, is to expand the documents with terms that represent their

content. This approach can make the most relevant terms more salient and also diminish

the vocabulary mismatch problem that occurs when users use terms in the query that

are different from the ones in the document. In [41] is proposed doc2query, a method

of predicting queries for a document, that is then expanded with those predictions. This

method uses a sequence-to-sequence transformer model, that given a document, outputs

possible questions that the document can answer. The model is trained using a dataset

consisting of pairs of queries and documents, where the input is a document, and the

output is a predicted query. After training, the model is used to predict queries that are

appended to each document. These expanded documents are then indexed and retrieved

by a standard retrieval algorithm. To evaluate the performance of this method, Nogueira

et al. [41] used the MS MARCO [36] and the TREC CAR [13] datasets, achieving an

increase in retrieval effectiveness of approximately 15% in both datasets, when compared

to the BM25 baseline, with the advantage of not significantly increasing the retrieval

latency since this method is done prior indexing.

In Nogueira and Lin [39] is presented docTTTTTquery, a model that expands on the

ideas of doc2query using the same setup but replacing the sequence-to-sequence trans-

former model with the sequence-to-sequence encoder-decoder model T5 [47]. This model

outperforms the BM25 baseline and doc2query on the MS MARCO dataset, attributing

the improvements over doc2query to the better language representation and pre-training

that the T5 model has.

19

CHAPTER 2. RELATED WORK

2.4.2 First-Stage Retrieval

First-stage retrieval is the initial step of fetching information from the dataset. This

operation needs to be efficient and fast, but also retrieve relevant documents, achieving a

high recall, in order to not compromise the next steps in the pipeline.

Although, in general, not returning the best ranking possible, this initial step is able

to return a specified number of documents, in the order of a few thousand, from a large

set of documents, in the order of millions, in a short amount of time. These documents

can later be re-ranked by a more computationally complex algorithm to achieve a better

ranking.

2.4.2.1 BM25

Okapi BM25 [51] is a ranking function based on a probabilistic model that estimates the

relevance of a document given a query. The typical ranking function of BM25 is a bag-of-

words function that ranks a set of documents based on the query terms appearing in each

document. The usual scoring function used in BM25 is represented in equation 2.11.

score(D,Q) =
n∑
i=1

IDF(qi) ·
f (qi ,D) · (k1 + 1)

f (qi ,D) + k1 · (1− b+ b · |D |avgdl)
, (2.11)

where D is a document, Q is a query containing keywords q1,. . . qn, f(qi,D) is the term

frequency of qi in document D, |D| is the length of the document in words, avgdl is the

average document length in the text collection from which documents are drawn, k1 and

b are parameters to allow optimization, and IDF(qi) is the inverse document frequency

of the query term qi, usually calculated using equation 2.12, where N is the number of

documents and n(qi) the number of documents containing qi.

IDF(qi) = ln(
N −n(qi) + 0.5
n(qi) + 0.5

+ 1). (2.12)

Another version of the BM25 model is BM25F [51]. This model considers a document

as a set of fields, for example, title, abstract, and body, and gives different degrees of

importance to each one.

2.4.2.2 Query Likelihood Model

In a language modeling approach, the objective is to estimate a language model for each

document and then rank these documents by the likelihood of the query, according to

the language model. The smoothing part of the model refers to the adjustment of the

maximum likelihood estimator of a language model. Zhai and Lafferty [67] showed that

the smoothing of the maximum likelihood is directly related to retrieval performance.

Two query likelihood models often used are the Jelinek-Mercer method (LMJM) and

the Bayesian smoothing using Dirichlet priors (LMD). In the case of LMJM, the method

20

2.5. RE-RANKING MODELS

involves the interpolation of the maximum likelihood model, with the collection model,

using a coefficient λ to control the influence of each model as represented in equation 2.13.

pλ(w|d) = (1−λ)pml(w|d) +λp(w|C), (2.13)

where pλ(w|d) represents the unigram language model given document d, p(w|C) is the

collection language model, and pml(w|d) is the maximum likelihood estimate given by

relative counts.

The LMD model assumes the language model as a multinomial distribution where the

conjugate prior for Bayesian analysis is the Dirichlet distribution. With this, it is possible

to derive equation 2.14, where pµ(wi |d) represents the unigram language model given

document d, p(wi|C) is the collection language model, c(w;d) is the count of word w in

the document d, and µ is a parameter greater than zero.

pµ(wi |d) =
c(wi ;d) +µp(wi |C)∑

wj
c(wj ;d) +µ

. (2.14)

Zhai and Lafferty [67] also found that the performance is generally more sensitive

to smoothing in longer queries, and that LMD performs best with shorter queries while

LMJM performs best with longer queries.

2.5 Re-ranking Models

In this section, we introduce several re-ranking models that are used after the first-stage

retrieval step and are more computationally expensive. The aim of these models is, by

having a “relatively small” (a few thousand) set of documents or passages (when com-

pared to the complete index), create a new rank that will better reflect the answers to

the query. This new rank is expected to improve on the results of the first-stage retrieval

rank.

2.5.1 Coordinate-Ascent

Coordinate ascent [33] is an algorithm that is frequently used in optimization problems

to iteratively optimize a multivariate objective function. To do this, it repeatedly cycles

through each parameter, maintaining the others fixed, optimizing the parameter in use.

In an information retrieval setting, coordinate ascent is a listwise approach, where the

scores of the pairs query-document are calculated as weighted combinations of the feature

values. This method uses two hyperparameters: (1) the number of restarts from random

weights and (2) the number of iterations.

2.5.2 Deep Relevance Matching Model

Deep Relevance Matching Model (DRMM) [19] is a model designed for relevance match-

ing in an ad-hoc retrieval setting. This model addresses exact match signals (same terms

21

CHAPTER 2. RELATED WORK

in query and document), query term importance (each term in the query has an impor-

tance weight), and other matching requirements (e.g., able to compare documents of

different lengths). This model uses a deep architecture at query term level over the local

interactions between query and document terms, a matching histogram mapping, a feed-

forward matching network, and a term gating network. Figure 2.4 shows the model’s

architecture.

Figure 2.4: Architecture of the Deep Relevance Matching Model [19].

In this model, the first step is to build the local interactions between each pair of

terms from a query and a document based on pre-computed term embeddings. After that

step, each query term variable-length interactions are transformed into a fixed-length

histogram. This histogram groups local interactions according to different levels of signal

strength. Since the values are obtained using the cosine similarity, this leads to values

between [-1,1] that are distributed in a set of disjoint bins. In this work, the bins are of

fixed size, and the exact match ([1,1]) is treated as a separate bin. Then a feed-forward

matching network is used to learn hierarchical matching patterns and produce a matching

score for each query term, basing this on the previously constructed histogram. The final

score is generated by aggregating the scores from each query term with a term gating

network to compute the aggregation weights. This allows the model to explicitly model

query term importance by controlling how much the relevance score of that query term

contributes to the final relevance score. The gating function used was the softmax function

in equation 2.15:

gi =
exp(wgx

(q)
i)∑M

j=1 exp(wgx
(q)
j)

, i = 1, . . . ,M (2.15)

where wg denotes the weight vector of the term gating network and xi
(q), i = 1, . . . ,M

denotes the i-th query term input.

The experimental results showed that DRMM outperforms traditional retrieval mod-

els like BM25 [51] and LMD [67], being later surpassed by KNRM [61] that we will discuss

in the following section.

22

2.5. RE-RANKING MODELS

2.5.3 Kernel-based Matching Models

In neural approaches, such as DRMM [19], presented in the previous subsection, it is

typical to use distributed representations like word2vec [34]. These representations can

cause problems that can be seen in this example withdrawn from Xiong et al. [61]: “
Word2vec may consider ’Pittsburgh’ to be similar to ’Boston’, and ’hotel’ to be similar to ’motel’.
However, a person searching for ’Pittsburgh hotel’ may accept a document about ’Pittsburgh
motel’, but probably will reject a document about ’Boston hotel’ ”. The work presented in

Xiong et al. [61] addresses these problems using a kernel-based neural ranking model

(K-NRM). The architecture of the model can be seen in Figure 2.5(a).

(a) K-NRM architecture [61] (b) Conv-KNRM architecture [8]

Figure 2.5: K-NRM (left) and Conv-KNRM (right) architectures.

The K-NRM model uses distributed representations to represent query and document

words and then uses their similarities to build a translation model. This translation model

is built by using an embedding layer to map each word t to an L-dimension embedding ~vt.

Then a translation layer constructs the translation matrix M, in which each element is the

embedding similarity between a query word and a document word: Mij = cos(~vtqi , ~vtdj).

Word pair interactions are then combined by a kernel-pooling layer that uses soft

term frequencies to convert the translation matrixM to query-document ranking features

φ(M):

φ(M) =
n∑
i=1

log ~K(Mi),

~K(Mi) = {K1(Mi), . . . ,KK (Mi)},

(2.16)

where ~K(Mi) applies K kernels to the i-th query word’s row of the translation matrix,

pooling it into a K-dimensional feature vector. The ranking features φ(M) are then com-

bined by a ranking layer to produce the final ranking score in equation 2.17, where w and

b are the ranking parameters to learn and tanh() is the activation function:

f (q,d) = tanh(wTφ(M) + b). (2.17)

Neural models like this require large amounts of training data. However, acquiring

manual training labels is too expensive, so to circumvent this problem, Xiong et al. [61]

23

CHAPTER 2. RELATED WORK

used user click data, which has shown that it can accurately predict manual labels. In

terms of results, K-NRM showed significant improvements, being extremely effective

at the top-ranking positions. According to the researchers, the kernel is the key to K-

NRM results, converting the learning-to-rank loss to requirements on soft term frequency

patterns, adjusting word embeddings in order to better separate relevant from irrelevant

documents [61].

An extension of the work in K-NRM [61] is Conv-KNRM [8]. Conv-KNRM presents a

convolutional kernel-based neural ranking model that uses a learned convolutional layer

to form n-grams from individual word embeddings. The convolutional layer is used to

project all n-grams to a common embedding space, allowing to match n-grams of different

lengths (cross-matching), being this the main advantage of this method.

In Conv-KNRM, the words are embedded in continuous vectors and then a CNN is

employed (convolutional neural network) to create n-gram embeddings from adjacent

word embeddings. This CNN applies convolutional filters by going over the text like a

sliding window. As in the case of K-NRM, soft-matches play an important role. These

soft-matches are calculated using the similarity between n-gram embeddings. After this

step, a kernel-pooling layer and a learning-to-rank layer are used to combine the n-gram

soft-matches resulting in a final ranking score. In Dai et al. [8], it is possible to see all the

details of the approach and Figure 2.5(b) represents the model’s architecture.

The results of Conv-KNRM showed the advantages of soft-matching n-grams in rele-

vance ranking, outperforming K-NRM in most tasks [8].

2.5.4 BERT-based Ranking Models

Nogueira and Cho [37] present a re-implementation of BERT for query-based passage

re-ranking, estimating a score si, which represents the relevance of a passage di to the

query q. The authors feed BERT with the query as sentence A and the passage as sentence

B, truncating the question to 64 tokens. The passage of text is also truncated, such that

the concatenation of the query, passage, and separator tokens have a maximum of 512

tokens. The researchers used a BERT LARGE model as a binary classifier, using the [CLS]

vector, which is present in all sequences, as input to a single layer neural network, to

obtain the probability of the passage being relevant. This probability is computed for

each passage, and the final result is obtained by re-ranking the passages according to

these probabilities. The fine-tuning of the BERT model is done using cross-entropy loss,

as represented in equation 2.18.

L = −
∑
jεJpos

log(sj)−
∑
jεJneg

log(1− sj), (2.18)

where sj is the likelihood of the passage being relevant, Jpos is the set of indexes of the

relevant passages, and Jneg is the set of indexes of non-relevant passages in the top-1.000

documents retrieved with BM25 [51].

24

2.6. CONVERSATION STATE TRACKING

This model was evaluated in two passage ranking datasets: MS MARCO [36] and

TREC-CAR [13], and at the time achieved state-of-the-art results on both datasets by a

large margin, surpassing the models previously described in this section.

In [40] is proposed a multi-stage document ranking algorithm based on [37]. The pro-

posed method is comprised of 3 stages that are used in a pipeline fashion, as represented

in Figure 2.6.

Figure 2.6: Architecture of the Multi-Stage Document Ranking BERT [40].

The first step is the initial retrieval. This step uses an inverted index and a BM25 [51]

scoring function, being recall the main focus of this step (typically retrieved 1000 docu-

ments). The second step is called monoBERT, and it uses BERT as a pointwise re-ranker

(considers a single document at a time), using a binary relevance classifier. In monoBert

is employed the same procedure as in [37]. The input is a query and a document, and

the model outputs the probability of the document being relevant to the query. Then

these documents are re-ranked using this probability to prune the results (resulting in

20-50 documents). After this, these documents are passed to another BERT model called

duoBERT, which is characterized as a pairwise approach (considers a pair of documents

at a time). The duoBERT takes as input a query, a document di, and a document dj, and

then the [CLS] vector is used as input to a single layer neural network to obtain the prob-

ability pi,j, of di being more relevant than dj. At inference time, the pairwise scores are

aggregated so that each document receives a single score. The final step is to re-rank the

list of documents according to these scores.

2.6 Conversation State Tracking

In this section, we introduce several state tracking models, which are used to maintain

the state of the conversation. The state tracking task is one of the most important aspects

of conversational systems because it gives context to the current conversation turn. To

achieve this, it is necessary to have a notion of the information seen so far and the ability

to understand when this information is needed, using it when a relevant situation arises.

25

CHAPTER 2. RELATED WORK

2.6.1 Hierarchical Recurrent Encoder-Decoder

The Hierarchical Recurrent Encoder-Decoder (HRED) was initially proposed by Sordoni et

al. [53] for query suggestions. In that approach, the history of past queries was considered

as a sequence at two levels: a sequence of words for each query and a sequence of queries.

To achieve that behavior, two RNNs were used to encode, one at word level and another

at query level. And a third RNN was used to decode an answer based on the output of

the encoder at sequence level.

In Serban et al. [52] is tackled the task of building a conversational dialogue system

based on large dialogue corpora using generative models (models that produce responses

auto-generated word-by-word). To achieve this, Serban et al. [52] proposed an extension

to the original HRED model in [53] by analogously considering a sequence of words for

each query, and a sequence of queries in the original model, as a sequence of tokens,

and a sequence of utterances, in a dialogue system. In a dialogue, the encoder RNN

maps each utterance to an utterance vector representing the hidden state. The RNN at

a higher-level keeps track of the past utterances (context) by processing each utterance

vector iteratively. The next utterance prediction is performed by a decoder RNN, which

takes the hidden state of the context RNN and produces a probability distribution over

the tokens in the next utterance. The encoder, context, and decoder RNNs all make use

of the GRU architecture [2]. Figure 2.7 represents the specified architecture.

Figure 2.7: Computational graph of the HRED architecture for a dialogue composed of
three turns [52].

In the same work, Serban et al. [52] also experimented with a bidirectional HRED.

This model is particularly useful for utterances that are long and have a more complex

syntactical articulation. In addition to the chain going forward, the bidirectional model

has a chain going backwards through the utterance tokens (reversing the tokens in the

utterance). From the results obtained, the bidirectional HRED appeared to retain infor-

mation from previous utterances better.

In a conversation question answering scenario, we can leverage HRED’s sentence and

26

2.6. CONVERSATION STATE TRACKING

conversation level architectures to model the conversational history.

2.6.2 Memory Networks

Because of the small memory and gradient vanishing problems of RNNs, Weston et al.

[59] present a class of models called memory networks. Memory networks address the

RNNs limitations by providing an easy way to read and write part of a long-term memory

component. Typical knowledge base approaches for QA use a two-phase strategy of first

applying information retrieval or extraction to find the answers and then inference. In

opposition, in memory networks, the extraction of information to answer a question is

performed “on-the-fly” over the memory.

Considering the architecture, a memory network consists of a memory, m, and four

components:

• I (Input feature map) – parses, does coreference resolution, and encodes the input

into an internal feature representation.

• G (Generalization) – this component makes use of a function that can be as simple

as storing the memory as is, or more complex, being able to update old memories,

organize the memory (in the context of a huge memory), and forget less useful

memories.

• O (Output feature map) – produces a new output (in the feature representation

space), given the new input and the current memory state. It can also be used to

perform inference.

• R (Response) – converts the output into the desired response format.

In the basic model, component I takes an input text in its original form, and component

G stores it in the next available memory slot. The O module produces output features

by finding k supporting memories given x (a pair of sentences). The function that scores

the pair, sO, depends on the k value and can be generalized for a k=1 as in equation 2.19,

where i = 1, . . . ,N are the memories available in memory m.

ok=1 =O1(x,m) = argmax
i=1,...,N

sO(x,mi), (2.19)

With k=2, the second iteration takes into account the value of the previous, resulting in

equation 2.20.

ok=2 =O2(x,m) = argmax
i=1,...,N

sO([x,mo1
],mi). (2.20)

For the response production in component R is used equation 2.21, where W is the set

of all words in the dictionary and SR is the function that scores the match. This equation

is the simplest of all in terms of providing an answer, being responsible for outputting a

27

CHAPTER 2. RELATED WORK

single word, out of all the words seen by the model. This can be used to answer simple

questions, where the answer is only one word.

r = argmax
wεW

sR([x,mo1
,mo2

],w), (2.21)

The training of the memory network is done in a supervised manner, where the inputs

and responses are labeled. This training uses margin ranking loss and stochastic gradient

descent.

To evaluate, Weston et al. [59] used three different experiments: (1) a large scale QA

dataset, (2) a simulated world QA setting, where there are some statements referencing

places, objects, and people, and the model has to answer questions about these statements,

and (3) a combination of the previous two experiments. The results showed that the model

was able to answer both general knowledge questions and specific statements referencing

to previous dialogue, outperforming standard RNNs.

In Sukhbaatar et al. [54], was developed an end-to-end architecture based on memory

networks for the question-answering problem. This approach uses a recurrent attention

mechanism to read the memory that can be successfully trained via back-propagation.

This approach is similar to the one in [59], but the argmax operations in each layer are

replaced by a continuous weighting from the softmax. This method requires less supervi-

sion, surpassing other baselines with the same level of supervision, such as the original

memory networks by Weston et al. [59].

Other applications of memory networks to model conversational context include Vi-

sual Dialog [11], which uses both images and text, and the Wizard of Wikipedia [14].

In Visual dialog, a memory network is used to keep track of previous question-answer

embeddings generated by an LSTM about an image. In Wizard of Wikipedia, memory

networks are used in conjunction with BERT embeddings to maintain the conversational

context, with the objective of simulating a conversation.

2.6.3 Conversational Query Rewriting

Another way of maintaining the conversational context is by using a query rewriting

method to convert conversational queries to context-independent queries. This rewriting

is particularly important in a retrieval system because a conversational query generally

lacks all of the information needed to search for the correct information, as a result of the

use of omissions and references to the context of the conversation.

To address the identified problems in [15] was created the CANARD dataset by man-

ually rewriting the conversational queries in QuAC [3] to form context-independent

queries to train models in the conversational query rewriting task. In particular, Elgohary

et al. [15] used a sequence-to-sequence model with an attention and copy mechanism,

which is fed with the full conversational history and the query to be rewritten.

Similarly in [58], it is fine-tuned a BERT model on the binary term classification

task that aims to add to the current query terms from previous turns. The model was

28

2.7. CONVERSATIONAL SYSTEMS

trained using distant supervision labels, which reduced the amount of human-curated

data needed for this task. In particular, after obtaining the BERT embeddings a linear

layer is applied to classify if a token in the history is relevant for the query, being concate-

nated to the query if the model considers the term relevant.

As a final example, in [30], a T5 [47] model is fine-tuned on the CANARD dataset to

generate context-independent queries. As in the previous approaches, the input to the

model is the full conversational history, and the target is the query rewritten. This model

achieved state-of-the-art results in the conversational query rewriting task that uses the

CANARD dataset [15]. The researchers attributed these results to the better language

representation and pre-training that the T5 model has over the BERT model [30].

2.7 Conversational Systems

2.7.1 Conversational Question Answering Systems

The task of a conversational QA system can be defined as given a passage p, the k-th

question qk in a dialog, and the conversation history Hk, answer qk by predicting an

answer span ak within p. In this section, we present some systems and the approach that

they use to solve the conversational question answering task.

2.7.1.1 FLOW for Conversation Question Answering

In Huang et al. [21] is presented FlowQA, a model consisting of two main components:

a neural model for single-turn machine comprehension, and FLOW, a mechanism used

to encode the conversational history, to use the intermediate representations created in

previous turns in the conversation. The full architecture is presented in detail in [21],

but summarizing is composed of a question and context encoding step, followed by a

reasoning step, which includes various integration-flow layers and attention (first on the

question and after on the context), being the final step the answer prediction. In our task,

the interest is primarily on the integration-flow layers. Each of these layers is composed

by a context integration layer and a FLOW component. In the context integration layer,

the current context representation Chi for each question i in layer h is passed into a Bi-

LSTM layer [20]. In the FLOW component, the output of the context integration layer is

reshaped and passed through a GRU [2]. The final output of the integration-flow layer is

the concatenation of the integration layer and the FLOW outputs. So, in the end, we have

a representation of both the context and its interactions with the current query.

In Yeh and Chen [66] is introduced an extension to FLOW [21] called FlowDelta. This

model is used to explicitly model information gain during dialogues. In FlowDelta, re-

searchers assume that the difference between previous hidden representations indicate a

change in flow. An example used in FlowDelta [66] is considering 3 consecutive questions

Qk-2, Qk-1, Qk, in which all discuss the same event, but Qk-2 is about another topic. The

researchers expect the hidden state {hk−1,j ,hk−1,j+1, . . . ,hk−1,l} of the span in turn k-1 to be

29

CHAPTER 2. RELATED WORK

dissimilar to the hidden state in the turn k-2 because their topics are different. To model

this, FlowDelta changes the computation of FLOW in Huang et al. [21] to also use the

difference between turn embeddings.

2.7.1.2 Pre-trained Models for Historical Question and Answer Embeddings

With the emergence of the large pre-trained language models of Section 2.3, researchers

have studied ways of incorporating these models into conversational question answering

systems. An example of this is the historical answer embedding (HAE) model from [45].

Qu et al. [45] use a BERT BASE [12] model, packaging the question and passage into

a sequence, obtaining the respective embeddings. To handle the conversational history,

the researchers give tokens extra embedding information by including a history answer

embedding (HAE) layer. In this layer two unique answer embeddings are learned that

indicate if a token is part of the historical answers or not.

In [46] is proposed an extension to HAE that uses a positional history answer em-

bedding method (PosHAE), and a history attention mechanism (HAM) that attends with

different weights to each historical turn. To perform the positional history answer embed-

dings, researchers used BERT to encode the question qk, the passage p, and the conversa-

tional history Hk into a contextualized representation, where k represents the current turn

in the conversation. So, given a training instance represented by the triple (qk,p,Hk), the

model generates k-1 variations, where each one contains the same question and passage,

but with a different turn from the history. Before passing that information to BERT it

is also added a positional history answer embedding called PosHAE [46]. This method

embeds the history answer ai, into the passage p, extending the work done in [45] with

positional information. Figure 2.8 demonstrates the encoding step. The input for the his-

Figure 2.8: Encoding step using PosHAE. QTi/PTi denote question/passage tokens. This
figure can be of training example (q6,p,H

2
6). E4 and E0 are the history embeddings for

tokens in and not in H2
6 , respectively [46].

tory attention mechanism (HAM) is the token-level and sequence-level representations

for all the variations of the same training instance. This history attention mechanism is

a single-layer feed-forward network that learns an attention vector D ∈ Rh, where h is

the hidden size of the token representation. This attention vector is then used to map a

sentence representation sik to a logit, that is the input to a softmax function that computes

the probabilities across all sequences generated by the same instance. The experiments

30

2.7. CONVERSATIONAL SYSTEMS

performed in the QuAC dataset [3] showed that BERT+PosHAE improved significantly on

the results of HAE, [45] attributing these improvements mainly to the history attention

mechanism (HAM) [46].

In Ohsugi et al. [42] is proposed a method that consists of two main steps: contextual

encoding and answer span prediction. In the contextual encoding step, a BERT model

is used to independently obtain paragraph representations that are conditioned by the

current question and each of the previous questions and answers. This process has three

parts: (1) the current question is encoded, (2) each question of the history is encoded, and

(3) each of the previous answers is encoded. After the encoding part, a function is used

to extract features from the results given by BERT, which correspond to the segment of

the paragraph in the final hidden states. In the answer span prediction step, the features

extracted are passed through a Bidirectional-GRU (BiGRU) generating M(1) that is used

to calculate the start index of the span using a linear layer and the softmax. To calculate

the end index, M(1) is passed through another BiGRU generating M(2), which is also used

as input to another linear layer and softmax. Figure 2.9 represents the complete approach,

also including the answer type prediction, necessary for the task where the model was

evaluated.

Figure 2.9: Complete model by Ohsugi et al. [42].

In Ju et al. [23] is presented a conversational QA system that is comprised of a

RoBERTa [31] model, Adversarial Training (AT), and Knowledge Distillation (KD). For

our task, the most relevant part of this architecture is the incorporation of context in the

31

CHAPTER 2. RELATED WORK

RoBERTa model. In more detail, the input to the RoBERTa model is built as:

“[CLS] Q∗k [SEP] C [SEP]′′ , (2.22)

where C is the context of the question (i.e., a passage), and Q∗k is the concatenation of

the history of question-answer pairs (turns) and the current question. To fine-tune the

model was used a rationale tagging multitask by using a fully connected layer where

the objective is to label each token of the paragraph as 1 if it should be included in the

rationale and 0 if not. Another detail is that since the research was conducted using the

CoQA dataset [50], possible answers also include Yes/No/Unknown beyond just passage

extraction, so an additional classification layer is built on top of RoBERTa to predict these

types of answers. The details about the Adversarial Training and Knowledge Distillation

parts of the system can be seen in the original paper [23]. At the time of writing, [23] is

currently in first place in the CoQa dataset [50].

2.7.2 Conversational Search Systems

Conversational search systems, as formally defined in Section 1.2, are different from the

conversational QA systems discussed in the previous section because of the retrieval step

that needs to be performed over a knowledge-base. In particular, while the conversa-

tional QA systems extract a span from an already provided passage, in conversational

search, there are possibly millions of passages from which to retrieve, making this a more

challenging task.

In [4] is presented a conversational search system that uses the coreference resolution

model from AllenNLP [27] to perform query rewriting, the BM25 [51] retrieval model

with the pseudo-relevance feedback model RM3 [32] to perform the first-stage retrieval

over the dataset, and a BERT model to perform the re-ranking [12]. The results of the

re-ranker were particularly relevant, showing that with limited training data, in this case,

the TREC CAsT 2019 dataset [10], it is difficult to train an effective BERT re-ranker model,

and for this reason, it is better to use a fine-tuned retrieval model.

Voskarides et al. [57] propose a query expansion model based on a notion of word

centrality (the most important words) and word recency (words that appear in the most

recent turns). To calculate word centrality, the researchers build an undirected graph

where the nodes are the words in the queries, and the edges are the cosine similarity

between the nodes (words) using the pre-trained word embeddings from word2vec [34].

Word recency is calculated using an expression that accounts for the turn where the words

appear [57]. So the final score for a word is the combination of the centrality and recency
scores. Then the top-k words ranked by this score are added to the current query. To

complement the query expansion technique, [57] also uses a BERT re-ranker following

[37], explained in Section 2.5.4, to obtain a score for each query-passage pair. This score

is then mixed with the score given by the LMD [67] retrieval model to obtain the final

score for a passage.

32

2.8. CRITICAL SUMMARY

In [63] is presented two different approaches to the conversational search task called:

Historical Query Expansion and Historical Answer Expansion. In the first approach, the

researchers use the BM25 [51] score for each word in the query to identify the most

relevant words in the conversation. They consider two levels of relevance: session words,

which are always added to each subsequent query, and query words, which are added

only from the last three queries. The other approach, Historical Answer Expansion, uses

the pre-trained BERT model from [37] to estimate the query-passage scores, which are

then mixed with the scores from the previous turn using a parameter (λ). This provides

a simple way of combining the score given by BERT to the current query-passage pair

with the scores obtained in the previous turn. Regarding the results, the Historical Query

Expansion method was the best performing system in TREC CAsT 2019 [10].

2.8 Critical Summary

In this section, we discuss all of the methods presented in this chapter.

The traditional first-stage retrieval algorithms, such as BM25 and query likelihood

models, are already established in the literature, basing its scoring functions on the term

frequency of the words in the document and index.

The construction of the index is still a matter of study as evidenced by recent works,

such as DeepCT [6], doc2query [41], and docTTTTTquery [39], that aim to increase the

performance of the well studied first-stage retrieval algorithms without incurring in an

increase in retrieval time.

In terms of re-ranking, we introduced models that work with word embeddings [8, 19,

61]. However, the state-of-the-art methods involve contextual word embeddings, which

can capture complex interactions between terms beyond simple term matching. These em-

beddings can be obtained by using pre-trained models such as BERT [12], RoBERTa [31],

T5 [47], and XLNet [65], which can then be further fine-tuned on a specific task for better

performance. These types of models are now the norm and marked a very important

milestone in retrieval and natural language processing. The development of these large

models is currently an active subject, being aided by the increase in computational power,

and the availability of large collections of text, although the resources needed to develop

these types of models are very demanding.

We also analyzed state tracking components that can model the conversational context

in different ways. In specific, we discussed Hierarchical RNNs [52], Memory Networks [54,

59], that have the advantage of keeping all of the relevant parts of the context in memory,

and query rewriting approaches that aim to rewrite the queries using the context present

in the history [15, 30, 58].

With the development of specific datasets for the question-answering task [3, 49, 50],

many systems were created that leveraged the advances in natural language processing,

and in specific, the use of the pre-trained models mentioned earlier, to model the history

of the conversation [23, 42, 45, 46]. However, these models are developed for a task where

33

CHAPTER 2. RELATED WORK

the answer is in a single provided document, being only necessary to extract a span, while

in a conversational search setting, there are possibly millions of documents.

We also discussed some conversational search systems [4, 57, 63], which showed that

using the context from previous queries is very important to achieve good results.

This thesis aims to utilize the knowledge described in this chapter and increase the

comprehension of these techniques in a conversational search setting, where their appli-

cation is still an open research topic.

34

C
h
a
p
t
e
r

3
Indexing and First-Stage Retrieval

3.1 Introduction

The first step in an information retrieval system, conversational or not, is to retrieve

relevant documents to a particular query. This method for each query returns a ranked

list of results with the ones the model considers the most relevant at the top.

Regarding the indexing stage, there are simple changes that can be applied to the

original data to improve retrieval performance, such as stemming and stop word removal.

Another option is document expansion techniques. Here the aim is to expand documents

with words or sentences that are relevant for that particular document. Depending on

the chosen algorithm, this can be a very expensive technique, however, this calculation is

performed before indexing the documents, having little impact on retrieval time in a live

system.

When designing a simple retrieval system, without a second step for re-ranking, the

focus is to have a model that is able to place the more relevant documents first, but

since in our approach we want to apply a theoretically superior and computational more

expensive re-ranking model, we instead focus on retrieving the largest amount of relevant

documents possible. Consequently, our main focus in the first-stage retrieval step is to

achieve the highest recall.

In this chapter, we explore several indexing strategies, document expansion methods,

and retrieval models. The choices of the different methods and algorithms presented in

this chapter are the result of the study of the related work and thorough experimentation.

The results obtained with the methods present in this chapter are comprehensively

examined in Chapter 6, where their robustness and performance are analyzed across

different metrics. Figure 3.1 represents a simple view of when each of the methods is

applied.

35

CHAPTER 3. INDEXING AND FIRST-STAGE RETRIEVAL

Original
Documents

Retrieval ModelQuery

Original
Documents Index

Document
Parser

Document
Expansion

First Stage
Ranking

Figure 3.1: Simple view of the architecture demonstrating where in the pipeline the
document indexing and retrieval methods are used.

3.2 Indexing and Document/Passage Expansion

3.2.1 Document-Passage Parser

The first step is to decide the best way to index the data. This data, comprised of vari-

ous documents/passages, can be stored as-is, or we can apply a simple but yet effective

modification to the text to improve the performance of the retrieval algorithms and di-

minish the vocabulary mismatch between the user’s queries and the document’s words.

This process is performed offline and is comprised of straightforward techniques like

tokenization, stemming, and stop word removal. As a control experiment, we index the

documents with all the words lowercased and using a standard white-space and punctu-

ation tokenizer. Since the documents to be indexed are passages, with a relatively short

length, the influence of stop words can be noticeable and introduce noise when searching

for relevant documents. To avoid this, we used two different stop word removal lists. The

first one is from Indri1 and the second one is from Lucene _english_stopwords2. From

the analysis of both lists, we saw that Indri has a more extensive list of stop words (418

words) when compared to the stop words list from Lucene (35 words), providing a way

of assessing the impact of stop words in the performance of the retrieval model.

We also experimented with the use of a stemmer to increase the number of matches

between the query and document words by converting words to their root form. The

stemmer used was the KStem3. The KStem is characterized by reducing the word to its

stem but avoiding conflating variants that have different meanings, such as “memorial”

and “memorize” that reducing to “memory” would overlap their representations.

Finally, our last indexing strategy utilizes both stop word removal and stemming.

Table 3.1 shows an example of a query before and after each of the previously described

method is applied.

1https://github.com/igorbrigadir/stopwords/blob/master/en/indri.txt
2https://github.com/apache/lucene-solr/blob/master/lucene/analysis/common/src/java/

org/apache/lucene/analysis/en/EnglishAnalyzer.java#L46
3http://lexicalresearch.com/kstem-doc.txt

36

https://github.com/igorbrigadir/stopwords/blob/master/en/indri.txt
https://github.com/apache/lucene-solr/blob/master/lucene/analysis/common/src/java/org/apache/lucene/analysis/en/EnglishAnalyzer.java#L46
https://github.com/apache/lucene-solr/blob/master/lucene/analysis/common/src/java/org/apache/lucene/analysis/en/EnglishAnalyzer.java#L46
http://lexicalresearch.com/kstem-doc.txt

3.3. RETRIEVAL MODELS

Table 3.1: Effects over a query using the different indexing strategies.

Original Query When and where is the next World Cup being played?

Standard Tokenizer when and where is the next world cup being played
Stop Words Indri world cup played
Stop Words Lucene when where next world cup being played
Stemmed when and where is the next world cup being play
Stop Words Lucene and Stemmed when where next world cup being play

3.2.2 Document/Passage Expansion

An alternative approach to improve retrieval efficiency is to expand documents with terms

that represent their content. This expansion can help with problems such as vocabulary

mismatch, which occurs when a user utilizes terms in the query that are different from

the ones in the document. It can also increase the term frequency of the more important

terms, influencing the score of the document calculated by the retrieval models described

previously. Document expansion also has the advantage of not incurring in a significant

increase in query time, since the expansion is done prior to indexing.

In our work, we used two neural document expansion techniques, doc2query [41],

and its improved version docTTTTTquery [39]. Both of these techniques predict queries

that can be asked given a document. Following the same approach as in [39, 41], we used

these techniques to predict k queries for each document, and then before indexing, we

concatenate these queries to the text of the original document, separating them by a spe-

cial token. The special token is used to identify where the original document ends, which

can be relevant for later steps. As a result of the expansion, the more important terms

(appearing in the predicted queries) have their term frequencies increased, and since

the documents are expanded with queries, there also exists the possibility of achieving a

greater match between the terms in the queries, and the terms in the document.

Table 3.2 shows an example of 5 queries predicted for a document using both doc-

ument expansion techniques described. From this table, we observe that the queries

predicted using docTTTTTquery seem to be more diverse, capturing the subject of the

document in a better way as also evidenced in the original work [39].

3.3 Retrieval Models

The responsibility of the retrieval models is to fetch documents given a query from a

collection of possibly millions of documents in an efficient and fast fashion. Retrieval

models are generally simple and unsupervised, basing their ranking in the query terms

in relation to their document-term frequency, collection-term frequency, and length of

the documents in the collection.

Choosing a good retrieval model is important for the effectiveness of our approach, so

we conducted a study over three different models frequently used in information retrieval.

37

CHAPTER 3. INDEXING AND FIRST-STAGE RETRIEVAL

Table 3.2: Example of 5 predicted queries for a MS MARCO document using doc2query
and docTTTTTquery.

Document The Manhattan Project and its atomic bomb helped bring an end to World
War II. Its legacy of peaceful uses of atomic energy continues to have an
impact on history and science.

Predicted Queries
doc2query

1. why was the manhattan project created
2. what was the manhattan project
3. why was the manhattan project important
4. why was manhattan an important factor
5. what was the result of the manhattan

Predicted Queries
docTTTTTquery

1. what were a major contributions to the manhattan effort
2. what impact did the manhattan project have on history
3. what is the manhattan project impact on world
4. what helped to end world war ii
5. why did the manhattan project help end world war ii

The first model is BM25 [51], a probabilistic model described in detail in Section 2.4.2.1.

The second is LMD (Language Model Dirichlet), and the third is LMJM (Language Model

Jelinek-Mercer). These last two are query likelihood models that estimate a language

model for each document, using different types of smoothing that change the way the

ranking score is calculated for each document. In particular, in [67] it was found that

LMD works best with short queries and LMJM with longer queries. The description of

these models is provided in Section 2.4.2.2.

As stated before, these are classical information retrieval models that don’t have any

real understanding about the text present in the query and document, besides term match-

ing, but have proved to be effective and are currently used in production systems like

ElasticSearch4. In our work, as in others [8, 19, 37, 61], these simple models are used to

retrieve a small set of documents from a collection of millions, that can then be re-ranked

by a more complex neural model.

3.4 Summary

Figure 3.2 demonstrates where each of the techniques described are applied. It also shows

the execution pipeline, from when the query is issued, to the moment where we obtain a

first list of ranked documents.

The top half of the Figure describes the document expansion techniques and indexing

strategies that we used to create the index. From the original collection of documents,

we can apply any or none of the document expansion techniques. These algorithms, as

explained before, are computationally expensive and aim at improving recall by increas-

ing the frequency of the more relevant terms and by decreasing the vocabulary mismatch

between the words in the user’s query and the words in the documents.

4https://www.elastic.co

38

https://www.elastic.co

3.4. SUMMARY

Original
Documents Index

Stopword
Removal

Stemming

doc2query

docTTTTTquery

Document ParserDocument Expansion

Retrieval Model

BM25

LMD

LMJM

Query First Stage
Ranking

Figure 3.2: Indexing and document expansion approaches (top half). Retrieval models
for first-stage retrieval architecture (bottom half).

The indexing strategy is defined by applying simple modifications to the content of the

documents. We can perform stop word removal with different stop word lists and utilize

different stemming algorithms to increase the number of matches between query and

document terms. All of these operations are performed offline (before query time), so

they don’t influence the retrieval time in a significant way. With all of the documents

parsed using these methods, we can proceed to create the index.

The bottom half of Figure 3.2 shows the steps to obtain an initial ranking. This is a

straightforward process since we only need to pass the query through a retrieval model.

As explained, we considered the typical information retrieval models BM25, LMD, and

LMJM to query the index. In the end, we obtain a list of ranked documents ordered by

their score that can be given to the user directly. Although it can be used in practice, this

list is obtained by models that lack the comprehension of text needed to achieve the best

results. So, to improve performance, at the expense of an increase in retrieval time, we

can apply more complex neural re-ranking algorithms.

In our work, since we are building a conversational system, the use of the original

query is often not sufficient to answer the user’s information need, so various query

rewriting methods will be introduced in Chapter 4.

39

C
h
a
p
t
e
r

4
Conversational Context as Query

Rewriting

4.1 Introduction

The retrieval models and architecture proposed in Chapter 3 can be enough for many

information retrieval needs but, due to the conversational aspects of this work, the query

can be in a format that doesn’t have all of the information needed to answer the user’s

query. An example of this is the conversation presented in table 4.1. In turn 2, the system

needs to understand that “its” refers to “Lisbon’s” (explicit coreference). Another even

more challenging example is presented in turn 3 since the monuments retrieved should

be in Lisbon, despite no direct evidence in the current query text (implicit coreference).

In a regular information retrieval system, it is almost impossible to retrieve relevant

information for turns 2 and 3 of the conversation because there is no notion of the context

of the conversation. To solve this problem one of the most crucial tasks is to rewrite the

queries to make use of context.

Table 4.1: Conversation example about a specific topic, in this case, the city of Lisbon.

Turn Conversational Query Non-conversational Query

1 How is the climate in Lisbon? How is the climate in Lisbon?
2 Tell me about its origins. Tell me about Lisbon’s origins.
3 What monuments should I visit? What monuments should I visit in Lisbon?

To perform this query rewriting task, one of the first things that needs to be tackled

is to perform coreference resolution to disambiguate entities, and include context from

previous turns to search for the correct information. Still in the queries, it is also possible

to perform query expansion, which means adding new terms to the query that can help

41

CHAPTER 4. CONVERSATIONAL CONTEXT AS QUERY REWRITING

retrieve relevant documents. To achieve this, we utilized the pseudo-relevance feedback

model RM3 [26].

Figure 4.1 represents a simple view of where each of the methods is applied, and in

Chapter 6, we present the results obtained with these methods.

Original
Documents

Conversational
Query Rewriting Retrieval Model

Index

Document
Expansion

Pseudo-Relevance
Feedback (RM3) Retrieval Model First Stage

Ranking

Query Expansion

Document
Parser

Conversational
Query

C
on

ve
rs

at
io

na
l

C
on

te
xt

Figure 4.1: Simple view of the architecture demonstrating where in the pipeline the query
rewriting and expansion methods are used.

4.2 Conversational Query Rewriting

The goal of conversational search is to provide a more natural interaction with the agent.

In a normal conversation, people tend to be succinct, making use of coreferences to

previous questions and answers, while also having a notion of the flow and context of

the conversation at any given moment, as seen in table 4.1. Our system must be able to

understand the various nuances of the conversation and rewrite the current question to

make the context explicit.

In this section, we explain the implemented query rewriting techniques, both in isola-

tion and in conjunction with each other, in order to address the context tracking require-

ments of conversational query rewriting.

4.2.1 Query Rewriting with Previous Queries

In conversational search, the incorporation of previous queries can be seen as a sim-

ple way of giving context to the current query. If the conversation follows the typical

information-seeking pattern of first exploring a general concept and then following this

with a more detailed search about that concept or a related one, we can use the previously

mentioned terms to expand the query. With this in mind, we structure the three following

approaches:

• Prefixing - Prefixes the first query issued by the user to the current query. We use

the first query since it is non-conversational and it is usually the starting point for

the subsequent queries. One of the problems of this approach is that in the event of

a topic shift during the conversation, the first query may introduce noise.

42

4.2. CONVERSATIONAL QUERY REWRITING

• Full-Union - Performs the union of the current query with all previous queries,

creating longer queries as the conversation advances. It is expected that most of the

text in the query will be noise, but all the relevant concepts needed to specify the

context will be present. This approach is meant to show the importance of getting

the right context for the current query instead of using the whole context.

• Union - Performs the union of the current query with each of the previous queries

separately, performing n queries (that are easily parallelizable) depending on the

turn depth t following equation 4.1:

n =

1, if t ≤ 2

t − 1, if t > 2
t ≥ 1, (4.1)

After this, we make a union of the results of all the queries and keep the top k doc-

uments retrieved with the highest retrieval scores, making this a fusion algorithm.

With this approach, we expect to obtain the most relevant documents for each com-

bination of queries, removing the documents that appear lower on the rank for each

query.

An example of each of the described approaches is presented in table 4.2.

Table 4.2: Example of incorporation of previous turns terms. The history of queries
represents the queries issued so far by the user (turn depth 3). The other rows represent
3 different approaches of using previous turns to rewrite the current query.

History of queries:
1. Tell me about the Bronze Age collapse?
2. What is the evidence for the Bronze Age collapse?
3. What are some of the possible causes?

Prefixing 1. Tell me about the Bronze Age collapse? What are some of the possible causes?

Full-Union
1. Tell me about the Bronze Age collapse? What is the evidence for the Bronze
Age collapse? What are some of the possible causes?

Union
1. Tell me about the Bronze Age collapse? What are some of the possible causes?
2. What is the evidence for the Bronze Age collapse? What are some of the possible causes?

4.2.2 Coreference Resolution

Coreference resolution is applied before performing any expansion on the query or search

in the dataset. We aim to resolve the coreferences in order to search for the correct in-

formation. To achieve this, we used the toolkit provided by AllenNLP [18]. This toolkit

has many different functionalities, such as named entity recognition, reading compre-

hension, coreference resolution, and others. In our work, we utilized the coreference

resolution module that uses the implementation from Lee et al. [27] but replacing GloVe

embeddings with BERT embeddings.

To encode the input, Lee et al. [27] used a vector representation for each word de-

rived from trained word embeddings and a 1-dimensional Convolutional Neural Network

43

CHAPTER 4. CONVERSATIONAL CONTEXT AS QUERY REWRITING

(CNN) over the characters. This representation is then passed through a bidirectional

LSTM [20] to compute the vector representation for the span. After this, an attention

mechanism is applied over the words in each span, to obtain a representation of the

full span. After obtaining the span representation, a scoring architecture based on feed-

forward neural networks (FFNN) is used to calculate sm(i), the unary score of span i being

a mention, and sa(i, j), the pairwise score of span j being an antecedent of span i. The

final score for the span s(i, j) is given by sm(i) + sm(j) + sa(i, j) if j is an entity mention and

is coreferent to i, or 0 if j is not a mention or is not coreferent to i.

In the AllenNLP [18] toolkit, the coreference resolution algorithm described in the

previous paragraph receives sentences as input, and outputs a list of mentions that indi-

cate which spans in the input belong to the same mention. With the notion that the first

mention is the most descriptive of all, we developed two approaches:

• Coref - In this first approach, all the spans with the same mentions are replaced

by the first one. We analyzed the results of this approach and noticed that the

algorithm sometimes attributes the same mention to concepts that are not related

(coreferent).

• Coref-Pronouns - To mitigate the problem identified in the previous approach, we

only replace the mention if it is needed, i.e., when pronouns are present in the

mention. Using this approach, mentions that give some information about the

subject remain unchanged.

Figure 4.2 shows the mentions detected by the coreference resolution model (same color

same entity) on a sentence. Table 4.3 shows the application of the two described ap-

proaches at the same sentence.

Who is and what did create ? is an American businessman , software developer , and philanthropist .

is best known as the co - founder of . When was founded ? was founded on the 4 of April of 1975 in

Albuquerque , New Mexico , EUA . When was born ? was born on October 28 , 1955 .

0 Bill Gates 0 he 0 William Henry Gates III

0 He 1 Microsoft 1 it 1 Microsoft

0 Bill 0 Bill Gates

Figure 4.2: Mentions detected by AllenNLP coreference resolution algorithm [27].

4.2.3 Conversational Query Rewriting using the Text-To-Text Transfer
Transformer (T5) Model

As explained in Section 2.3, the T5 model is a large, pre-trained, encoder-decoder model,

with a simple text-to-text input-output format that can be fine-tuned in various tasks,

such as machine translation and question answering.

In our work, we use the characteristics of T5 to rewrite the queries in a conversa-

tional format to form non-conversational queries. To achieve this, the model must be

capable of resolving the coreferences and provide the necessary context to queries that

44

4.2. CONVERSATIONAL QUERY REWRITING

Table 4.3: Results of applying the developed coreference resolution methods.

Coref

Q1: Who is Bill Gates and what did Bill Gates create?
A1: Bill gates is an American businessman, software developer, and philanthropist.

He is best known as the co-founder of Microsoft.
Q2: When was Microsoft founded?
A2: Microsoft was founded on the 4 of April of 1975 in Albuquerque, New Mexico, EUA.
Q3: When was Bill Gates born?
A3: Bill Gates was born on October 28, 1955.

Coref-Pronouns

Q1: Who is Bill Gates and what did Bill Gates create?
A1: William Henry Gates III is an American businessman, software developer, and philanthropist.

He is best known as the co-founder of Microsoft.
Q2: When was Microsoft founded?
A2: Microsoft was founded on the 4 of April of 1975 in Albuquerque, New Mexico, EUA.
Q3: When was Bill born?
A3: Bill Gates was born on October 28, 1955.

are not specific enough. To accomplish this, our approach follows the one presented

by Lin et al. [30]. This approach consists of fine-tuning the T5 BASE model using the CA-

NARD dataset [15]. CANARD is a dataset created by rewriting the questions in QuAC [3]

to form non-conversational questions. These questions rewrites were done by human

crowdsourced workers to form context-independent natural questions that preserve the

structure of the original query. This resulted in a dataset with 31.538, 3.418, and 5.571

query rewrites for training, development, and test sets, respectively.

To train the T5 model it is necessary to provide an input sequence and a target se-

quence given as strings. With this notion, we constructed the input using two different

formats, where i is the current turn, q is a query, p is a retrieved passage, and [CTX] and

[TURN] are special separator tokens. [CTX] is used to separate the current query from

the context (previous queries and passages), and [TURN] is used to separate the historical

turns. In particular, we created two input formats:

• Utterance-Separated - Uses as input sequence the concatenation of the history of

queries using a special token [TURN] to separate every historical utterance. After

this, we prefix the current conversational query to the history, separating them with

the special token [CTX]:

“qi [CTX] q1 [TURN] p1 [TURN] q2 [TURN] p2 [TURN] . . . qi−1 [TURN] pi−1”. (4.2)

• Turn-Separated - Uses the same strategy as Utterance-Separated but it adds the

special token [TURN] every two historical utterances (query-answer pair):

“qi [CTX] q1 p1 [TURN] q2 p2 [TURN] . . . qi−1 pi−1”. (4.3)

The target in both input formats is the question rewritten, and the model is trained using

the standard maximum likelihood [47].

Examples of the inputs, targets, and predicted queries are presented in table 4.4. The

first two examples are from CANARD, and the last two are from TREC CAsT [9], the

conversational search dataset that we introduced in Section 2.2.1.1, and that we will

45

CHAPTER 4. CONVERSATIONAL CONTEXT AS QUERY REWRITING

evaluate in more detail in Section 6.1. The way the input is created only affects the

CANARD dataset because in TREC CAsT 2019 the historical utterances don’t depend

on the responses of the system. As we can see, T5 is capable of resolving ambiguous

queries in most situations, however, it sometimes mistakes similar entities when multiple

are involved, as evidenced in [15] and in table 4.4 example 3, where the model predicts

“throat cancer” instead of “lung cancer”. We can also note that this model is more robust

than simple coreference resolution, as we can see in example 4, where it includes the

words “Bronze Age Collapse”, even though there is no particular pronoun or coreference

mention (implicit coreference).

Comparing the T5 model to the previously described AllenNLP coreference resolution

model, we can see that both are able to resolve explicit coreferences, i.e., when a particular

pronoun or name is used to refer to a previously mentioned entity. The main advantage of

this trained T5 model over AllenNLP’s model is the ability to perform implicit coreference

and context resolution, which is very important in a conversational search system.

Table 4.4: Example of T5 query rewriting: inputs, targets, and predictions.

CANARD

Original Query What was his agreement with McMahon?
T5 Input Query
(Utterance-Separated)

What was his agreement with McMahon? [CTX] Superstar Billy Graham [TURN]
Return to WWWF (1977-1981) [TURN] Why did he return to the WWWF? [TURN]
an agreement with promoter Vincent J. McMahon Senior

T5 Predicted Query What was Superstar Billy Graham’s agreement with McMahon?
Target Query What was Billy Graham agreement with promoter Vincent J. McMahon?

Original Query What was his agreement with McMahon?
T5 Input Query
(Turn-Separated)

What was his agreement with McMahon? [CTX] Superstar Billy Graham. Return to
WWWF (1977-1981) [TURN] Why did he return to the WWWF? An agreement with
promoter Vincent J. McMahon Senior

T5 Predicted Query What was Superstar Billy Graham’s agreement with McMahon?
Target Query What was Billy Graham’s agreement with McMahon?

TREC CAsT 2019

Original Query What are its symptoms?
T5 Input Query What are its symptoms? [CTX] What is throat cancer? [TURN] Is throat cancer

treatable? [TURN] Tell me about lung cancer.
T5 Predicted Query What are lung cancer’s symptoms?
Target Query What are throat cancer’s symptoms?

Original Query What are some of the possible causes?
T5 Input Query What are some of the possible causes? [CTX] Tell me about the Bronze Age collapse?

[TURN] What is the evidence for the Bronze Age collapse?
T5 Predicted Query What are some of the possible causes of the Bronze Age collapse?
Target Query What are some of the possible causes for the Bronze Age collapse?

4.3 Query Expansion With Pseudo-Relevance Feedback

Query expansion is the technique of adding new terms to a query. Some methods work

on expanding the query based on pseudo-relevance feedback (blind feedback), meaning

that they don’t need the active participation of the user. These methods can be applied to

46

4.4. SUMMARY

both conversational and non-conversational systems to retrieve documents that may be

relevant but were not retrieved or were lower in the rank when using the original query.

To select the terms to expand the initial query, we first search the index using the

original query provided by the user or the query rewritten using any of the previously

mentioned methods. After this, we obtain a list of documents ordered by their relevance

score, and we consider the top k documents as relevant. With these k documents, we use

the most common n terms to expand the query. The weights of each term in the original

query and documents are calculated using one of the relevance feedback models that we

describe in the remainder of this section.

In [32], the authors demonstrated that RM3 is one of the most effective relevance

feedback methods and also one of the more robust to parameter setting. Before intro-

ducing RM3, we first describe one of its parts, RM1 [26]. RM1 assumes independence

between query words and relevant document words. Equation 4.4 shows how to calculate

RM1, where Θ represents the set of document models,Md represents a document’s model,

p(w|Md) represents the relevance of a term w, and p(qi |Md) represents the relevance of a

query term qi :

pRM1(w|Θ) =
∑
MdεΘ

p(w|Md)p(Md)
m∏
i=1

p(qi |Md). (4.4)

RM3 is then given by equation 4.5, where α is the parameter that interpolates the original

query model p(w|MQ) with the relevance model, which in this case is RM1:

pRM3(w|Q) = (1−α) · p(w|MQ) +α · pRM1(w|Θ). (4.5)

It is important to note that query expansion, although used to improve results, makes

retrieval slower due to the need for a second search over the index and can introduce

noise or drift the query to another topic, hurting overall performance.

An example of a query expanded with RM3 is provided in table 4.5. We can see that

the expansion encountered relevant terms such as “megalodon”, but it also introduced

other terms that can drift the query to another topic like “whale”, “blue”, and “million”.

Table 4.5: RM3 expansion of a query using α=0.2, 20 feedback documents and 10 feed-
back terms. The numbers indicate the weight given to each term.

Original Query What is the largest shark ever to have lived on earth?

Rm3 Query (shark)0.1583 (largest)0.1555 (earth)0.1282 (ever)0.1247 (what)0.1142

(have)0.1142 (live)0.1142 (whale)0.0305 (blue)0.0145 (million)0.0136

(megalodon)0.0131 (ago)0.0103 (animal)0.0081

4.4 Summary

In this chapter, we focused on the bottom half of Figure 4.3, which shows the query

rewriting and query expansion methods outlined in this chapter.

47

CHAPTER 4. CONVERSATIONAL CONTEXT AS QUERY REWRITING

Original
Documents

Concatenation
and Union

Retrieval Model

Index

Document
Expansion

Pseudo-Relevance
Feedback (RM3) Retrieval Model First Stage

Ranking

Query Expansion

Document
Parser

Coreference
Resolution

T5

Conversational
Query Rewriting

 Conversational

Query

C
on

ve
rs

at
io

na
l

C
on

te
xt

Figure 4.3: Indexing and document/passage expansion approaches (top half). Retrieval,
query rewriting and expansion for first-stage retrieval (bottom half).

Describing in more detail the pipeline, the query can be done in a natural language

format and can be conversational, making use of context from previous turns. When in

a conversational setting, the query is passed through a query rewriting process. In this

process, we can apply one or more of the techniques described earlier, such as concate-

nating previous turns, executing coreference resolution, or using the trained T5 model

to provide context to the current query. The use of previous queries is a simple way of

resolving context at the expense of a greater amount of noise. The use of a coreference

resolution algorithm, such as AllenNLP can perform explicit coreference resolution by

replacing pronouns as presented in table 4.1, turn 2, but lacks the ability to add implicit

context like in turn 3 of table 4.1, which can be done by using the trained T5 model. We

also saw some examples of failed context resolution in table 4.4, which shows that these

techniques are not perfect, failing to resolve coreferences or using the wrong mention.

Following the query rewriting step, we do the same process explained in Chapter 3

and perform a search in the index using the retrieval model of our choice. If we opt to use

a query expansion technique, such as RM3, after the first search in the index, we perform

a second search that uses the query, expanded with terms retrieved from the passages,

with the weights computed by the relevance model. This expansion can retrieve more

relevant passages, but it can also add irrelevant terms.

After all these steps, we obtain a list of ranked passages that can then be used as

input to a re-ranking algorithm, such as the ones that will be explained in Chapter 5.

With these extensions to the system’s architecture, we are now able to use the system

in both conversational and non-conversation scenarios by maintaining context through

the rewrite of the user’s queries. This is crucial, especially in a conversational search

system, since there are possibly millions of passages, and a conversational query is bound

to produce poor results if the context is not accounted for.

48

C
h
a
p
t
e
r

5
Conversational Context-Aware Neural

Ranking

5.1 Introduction

In this chapter, we delve into neural ranking models and describe our implementation

of the various architectures, algorithms, and adaptions developed to bring these models

to a conversational search scenario. In our work, we use the neural ranking models in a

re-ranking task, that as the name suggests, happens after having an initial ranking. This

initial ranking is typically performed by simpler term-matching-based models that are

able to process large amounts of text in a faster fashion, such as the ones presented in

Section 3.3.

With the new pre-trained neural language models, such as BERT [12] and others [31,

65] explained in Section 2.3, it is possible to generate contextual embeddings for a sen-

tence and each of its terms. These embeddings can then be used as input to a model to

perform re-ranking of the passages. This ranking is usually considered better because

the model captures the context of the terms in the query and passage, as well as their in-

teractions, being able to judge more thoroughly if a passage is indeed relevant to a query,

not by term matching or frequency, but by the model’s pre-trained term embeddings and

fine-tuning on this particular task.

The models developed in this chapter use as a foundation a BERT model fine-tuned on

a binary classification task [37]. This model achieved good results in non-conversational

re-ranking tasks, where there is only one query and a set of passages. However, we

believe that the context present in a conversation can be seen in both previous queries

and answers, so we extended the model’s architecture to also consider the conversational

history. In particular, we extended BERT with the proven state-tracking components:

RNNs [2, 20, 42] and Memory Networks [54, 59] to maintain a notion of the context of

49

CHAPTER 5. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING

the conversation while re-ranking. Figure 5.1 shows where in the conversational search

pipeline the re-ranking models are used. The results obtained by these methods are

presented in Chapter 6, where we perform extensive testing across various metrics to

evaluate the effectiveness of each of the proposed architectures.

Original
Documents

Retrieval Model Query Expansion
(RM3) Retrieval Model

Original
Documents

Conversational
Query Rewriting

Index

Document
Parser

Document
Expansion

First Stage
Ranking

Re-ranked
Documents

Re-ranking
Model

C
on

ve
rs

at
io

na
l

C
on

te
xt Conversational

Query

Figure 5.1: Simple view of the architecture demonstrating where in the pipeline the
re-ranking model is used.

5.2 BERT Model for Passage Re-ranking

As explained in Section 2.3.1, BERT is a pre-trained language representation model

trained on large amounts of data that generates embeddings that capture the context

of words in a sentence. These representations alone can be useful for many tasks, such

as classification and question-answering, however, the real power of these models comes

from fine-tuning on a specific task, which, in turn, improves performance for that task.

In Nogueira and Cho [37], the BERT model is fine-tuned on the passage ranking

task through a binary relevance classification task, where positive examples are relevant

query-passage pairs, and negative examples are non-relevant query-passage pairs. In our

work, we follow the same approach, as presented in Figure 5.2.

The query, q, is truncated to a maximum of 64 tokens and the passage, p, is also

truncated so that the concatenation of the query, passage, and separator tokens has a

maximum of 512 tokens. It is used a maximum of 512 tokens because this is the maximum

number of tokens that BERT can handle as a single input. So, the input to BERT given a

sequence of N tokens is given as:

emb = BERT (“[CLS] q [SEP] p′′), (5.1)

where emb ∈ RN×H (H is BERT embedding’s size) is the embeddings matrix of all tokens,

and [CLS] and [SEP] are special tokens in BERT’s vocabulary, representing the classifi-

cation and separation tokens, respectively. From emb we extract the embedding of the

first token, which corresponds to the embedding of the [CLS] token, emb[CLS] ∈ RH . This

embedding is then used as input to a single-layer feed-forward neural network (FFNN),

followed by a softmax, to obtain the probability of the passage being relevant to the query:

P (p|q) = sof tmax(FFNN(emb[CLS])). (5.2)

50

5.3. CONVERSATIONAL BERT FOR PASSAGE RE-RANKING

[CLS] q1 qn [SEP] p1 pm

Query Passage

... ...

BERT

Prob(0), Prob(1)

FFNN

Softmax

emb

Figure 5.2: BERT re-ranker architecture. The input to BERT is the query concatenated
with each one of the passages at a time, using the structure [CLS] q [SEP] p.

With P (p|q) calculated for each passage p, given a query q, the final rank is obtained by

re-ranking according to the probability of being relevant, i.e., the closer to a relevance

probability of 1, the closer the passage will be to the top of the rank.

This method of fine-tuning BERT has shown successful results in re-ranking tasks,

being able to surpass various baselines, achieving state-of-the-art in some of them [36, 37,

40].

An example of the input to the BERT model is presented in table 5.1 for the query

“Why is blood red?”. In the first passage, there are multiple references to “red” and to

“blood”, which for a typical retrieval model would be enough to consider this a relevant

passage. However, if we read both passages carefully, we can conclude that only the

second passage actually answers the question. These subtleties are caught by the BERT-

based ranking model giving the second passage a higher probability of being relevant,

and so it is put on the top of the rank.

Despite the very good performance of this method in re-ranking tasks, we reckon that

in a conversational search setting, there are particular characteristics that could be used

to improve the performance of this model, especially when considering the context in

queries and answers from previous turns.

5.3 Conversational BERT for Passage Re-ranking

As we saw in the previous section, BERT can be fine-tuned on a passage re-ranking task

with good results. Despite this, conversational search is more complex than just passage

ranking since we are predominantly working in a multi-turn, sequence-based task. In

this scenario, we have to not only manage the current query but also have a notion of the

context where the query is posed. We believe that the context can be seen in both previous

51

CHAPTER 5. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING

Table 5.1: Example of the input and output of the BERT model in the relevance classifica-
tion task for the query “Why is blood red?”. The rank is calculated in the end by ordering
the passages in decreasing order of Prob(1).

BERT Input in format “[CLS] q [SEP] p” Prob(1) Rank

[CLS] Why is blood red? [SEP] Red blood cells. The purpose of red blood
cells in the blood is to carry oxygen to body cells. The hemoglobin in red
blood cells binds to oxygen received from the lungs, and these cells are
circulated in the blood to all cells to supply needed oxygen. Blood cells
carry oxygen from the lungs to the body’s tissues and take carbon dioxide
from the tissues back to the lungs.

0.837 2

[CLS] Why is blood red? [SEP] Blood is red because it is made up of cells
that are red, which are called red blood cells. But, to understand why these
cells are red you have to study them on a molecular level. Within the red
blood cells there is a protein called hemoglobin. Each hemoglobin protein
is made up subunits called hemes, which are what give blood its red color.

0.993 1

queries and answers, so it is necessary to define a model that can leverage this information.

Therefore, while re-ranking, we want the model to consider the importance of the passage

to the current query, as well as the importance of the passage given the conversational

context. An example of this is present in table 5.2. In turn 2, we want the model to focus

on answering the query by retrieving passages that define “extinction event”, but push to

the top passages that discuss extinction events related to the conversational context, that

in this case from the previous turn is the “Cretaceous-Paleogene extinction event”.

Table 5.2: Example of the need for conversational context to improve search results. The
passages are adapted from the corresponding Wikipedia articles.

Turn Query Passages

1 What is a
Tyrannosaurus?

Tyrannosaurus is a genus of coelurosaurian theropod dinosaur. The
species Tyrannosaurus rex, often called T-Rex, is one of the most well-
represented of the large theropods. It was the last known member of
the tyrannosaurids, and among the last non-avian dinosaurs to exist
before the Cretaceous-Paleogene extinction event.

2 What is an
extinction event?

An extinction-level event (also known as a mass extinction or biotic
crisis) is a widespread and rapid decrease in the biodiversity on Earth.
An example of this event, the Cretaceous-Paleogene, finished with 75%
of all species extinct.

In a conversational search scenario, the conversations can be long, spanning mul-

tiple turns, wherein each one there are various passages. This makes the approach of

simply concatenating the multiple rounds together infeasible because of the maximum

input of the BERT model (512 tokens), as well as the dispersion of topics throughout the

conversation (topic changes) that can incorrectly influence the model.

52

5.3. CONVERSATIONAL BERT FOR PASSAGE RE-RANKING

To expand the BERT model to this conversational passage ranking setting, we propose

two different architectures based on the study of the state-of-the-art models and related

work of Chapter 2:

• ConvBERT RNN - BERT is used to generate term and sentence embeddings. An

RNN is used to model the conversational context.

• ConvBERT MemNet - BERT is used to generate term and sentence embeddings.

Memory networks are used to model the conversational context.

5.3.1 ConvBERT RNN

RNNs are generally used to model sequences of data and have been applied in various

domains because of their ability to analyze the current input conditioned on previously

seen inputs by the use of a hidden state [2, 20, 52]. In ConvBERT RNN, we aim to combine

this architecture with the generated BERT embeddings and utilize the RNN’s hidden state

to model the conversational context between conversational turns.

Using an RNN in a conversational scenario is studied in [53] by using a Hierarchical

Recurrent Encoder-Decoder (HRED) architecture. In this architecture, explained in more

detail in Subsection 2.6.1, there are two hierarchical RNNs, one that encodes the sentence

and another that encodes the context of the conversation. Our model, ConvBERT RNN,

or Conversational BERT using Recurrent Neural Networks, uses a similar structure but

replaces the bottom RNN (sentence level) with a BERT model that generates the sentence

embeddings. This way, we can leverage the better sentence representations given by BERT

and use an RNN to maintain the conversational context.

Another paper that served as inspiration for the developed architecture is presented by

Ohsugi et al. [42]. But unlike in [42], where the answer to all queries in the conversation

is a span of text from a single passage, we are in a retrieval scenario, a more challenging

environment, where there are possibly millions of passages. This makes topic shifts

more frequent and diverse, since we can have queries unrelated to previous queries and

passages, while in the single passage setting the queries are more grounded.

The complete ConvBERT RNN architecture can be seen in Figure 5.3. The Figure

represents two turns of information seeking. In the first turn, the query and each of

the retrieved passages is encoded by BERT using the same input structure explained

in the previous section and represented in equation 5.1. The difference here is that we

are training a new model from the start, so we can train it with different parts of the

embeddings generated by BERT. In particular, we consider these embeddings:

• [CLS] token of the last hidden state - In theory, this token is able to represent the

whole sequence since the model was fine-tuned on the relevance classification task

using this embedding. This is also one of the most common ways of using BERT [12,

37, 44].

53

CHAPTER 5. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING

RNN
(LSTM or GRU)

Prob(0), Prob(1)

FFNN

Softmax

RNN
(LSTM or GRU)

Prob(0), Prob(1)

FFNN

Softmax

Turn 1 Turn 2

Hidden State
(Conversational Context)

emb emb

[CLS] q1 qn [SEP] p1 pm

Query 1 Passage

... ...

BERT

[CLS] q1 qn [SEP] p1 pm

Query 2 Passage

... ...

BERT

Figure 5.3: ConvBERT RNN architecture. The left side of the figure represents the first
turn in the conversation and the right side represents the second turn. The input to BERT
is the query concatenated with each one of the passages at a time, using the structure
[CLS] q [SEP] p.

• Pooled output of the [CLS] token - This embedding corresponds to [CLS] token

of the last hidden state further processed by a linear layer and a tanh activation

function. This is also a usual way of using BERT, but it works best when the model

is fine-tuned on the task at hand [37].

After this, we pass the chosen BERT [CLS] embedding (emb[CLS]) through an RNN such

as, an LSTM [20] or GRU [2] to obtain the representation of the current query-passage

pair in turn i given the context (outi), and the hidden state of the conversation (hi), which

will be passed to the subsequent turns:

outi , hi = RNN (emb[CLS], hi−1), (5.3)

The representation of the query-passage pair (outi) is subsequently used as input to a

single-layer feed-forward neural network (FFNN) followed by a softmax function to cal-

culate the probability of the passage being relevant:

P (p|q) = sof tmax(FFNN (outi)), (5.4)

In the second turn, we apply the same procedure, but we also have access to the hidden

state generated by the RNN in the previous turn (hi−1). We use this hidden state to

maintain the conversational context by passing the hidden state generated by the first

passage in the rank to the next turn. The rationale for this is that the most relevant

passage, and the one that the user first sees, is the one that appears in the first position of

the ranked list of results. In an interactive setting, we could replace this hidden state with

the passage the user clicked, using the user’s feedback instead of the model’s previous

output.

54

5.3. CONVERSATIONAL BERT FOR PASSAGE RE-RANKING

To train this model, we need conversations in the form of conversational queries about

a specific topic with corresponding passages labeled as relevant and non-relevant to the

query. The input to the model in each turn will then be a query-passage pair, and the

output is the probability of the passage being relevant to the query. We then proceed

to train the model using the standard cross-entropy loss as in [37]. After training, at re-

ranking time, we calculate for a query, and each of the passages retrieved by the retrieval

model, the probability of the passage being relevant to the query. In the end, we re-rank

the passages according to that probability. More details about the training and evaluation

process of the model will be discussed in Section 6.4.3.1.

5.3.2 ConvBERT MemNet

As explained in Section 2.6.2, the memory network architecture can be used to mitigate

the problems that arise from the use of RNNs, such as vanishing gradient problems [54,

59]. More important than that and specific to our task, there is also the problem that the

previous queries and passages are always encoded in the RNN’s hidden state, so previous

queries and passages unrelated to the current query can add noise to the conversational

context representation. This problem is addressed by the memory networks because it

explicitly stores the embeddings of each turn separately.

Our approach with ConvBERT MemNet (Conversational BERT using Memory Net-

works) uses a single-layer, single-hop memory network [54] to model the conversational

context. Ways of using memory networks for question-answering have proven to be suc-

cessful for example in Visual Dialog [11], which uses both images and text, and in Wizard
of Wikipedia [14]. In Wizard of Wikipedia in particular, memory networks are used with

BERT embeddings as input to simulate a conversation.

Figure 5.4 shows the implemented architecture in the fourth turn of the conversation,

storing the top query-passage embedding in each turn (3 embeddings stored memories).

The first step, and necessary in all turns of the conversation, is to use BERT to en-

code the query with each of the retrieved passages following the same input structure as

ConvBERT RNN represented in equation 5.1.

After getting the [CLS] embeddings generated by BERT (emb[CLS]), if we are in the

first turn of the conversation, i.e., the memory is empty, we bypass the memory access

and pass the embeddings directly to the feed-forward neural network followed by a

softmax function to obtain the probability of the passage being relevant. This is the same

expression used in [37] because we are not in a conversational scenario:

P (p|q) = sof tmax(FFNN (emb[CLS])). (5.5)

If we are not in the first turn (the memory is not empty), we follow the approach

of Figure 5.4. First, we perform the inner product between the current query-passage

embedding, emb[CLS], and each of the memories (previous turns embeddings), mi , and

then calculate the softmax of these inner products to get the attention weights, ai , for each

55

CHAPTER 5. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING

M
em

or
y

1

T
u
r
n

2

T
u
r
n

3

T
u
r
n

Memory
Query-Passage

Embeddings BERT

Softmax

Memory

Weighted Sum

Context
Vector

FFN
N

S
oftm

ax

P
rob(0), P

rob(1)
Query-Passage

Embeddings BERT

emb

[CLS] q1 qn [SEP] p1 pm

Query Passage

... ...

BERT

Attention Weights

Inner Product

Figure 5.4: ConvBERT MemNet architecture in the fourth turn of the conversation, stor-
ing the top query-passage embedding in each turn (3 previous turns in memory). The
input to BERT is the query concatenated with each one of the passages at a time, using
the structure [CLS] q [SEP] p.

memory:

ai = sof tmax(emb[CLS] m
T
i), (5.6)

With these attention weights, we calculate a weighted sum with the memories, which

returns the context vector c:

c =
∑
i

aimi , (5.7)

Following that, we perform the sum of the weighted memories with the current embed-

ding, and pass this through a linear layer and a softmax function to get the probability of

the passage being relevant:

P (p|q) = sof tmax(FFNN (c+ emb[CLS])). (5.8)

In this work, we store as memories the top passage given by the re-ranking algorithm

in each turn. This is the same rationale used in ConvBERT RNN, but in the ConvBERT

MemNet, the use of a dedicated memory provides a more flexible way of using the con-

text. For example, instead of only using the embedding of the top passage retrieved as

a memory, we can use several and adapt the weights given to each one depending on

their rank. Also, in an interactive scenario, we could use as memories all of the passages

previously clicked by the user, maintaining a complete history of the user’s interactions

with the system.

56

5.4. SUMMARY

With this architecture, we mitigate the problems of the RNNs, while also having

the advantage of keeping all of the previous sentence embeddings in memory in their

original form, not losing any information. These embeddings can then be “used” or

“ignored”, depending on the attention weights given to each memory, so we believe that

this architecture may be more robust to topic shifts.

The training procedure of ConvBERT MemNet is the same as in ConvBERT RNN,

using conversations with labeled query-passage pairs. At re-ranking time, we also apply

the same process as in ConvBERT RNN, ranking the passages using the score given by the

model. As stated before, further details about training and evaluation will be provided

in Section 6.4.3.1.

5.4 Summary

The pipeline of the conversational search system developed is shown in Figure 5.5. In

this chapter, we focused on re-ranking models, and in specific, we presented different

architectures that take advantage of the pre-trained language model BERT [12].

Re-ranking Model

Original
Documents

Retrieval Model Query Expansion
(RM3) Retrieval Model

Original
Documents Index

Document
Parser

Document
Expansion

First Stage
Ranking

Re-ranked
Documents

BERT
Passage Ranking

ConvBERT
RNN

ConvBERT
MemNet

Conversational
Query Rewriting

C
on

ve
rs

at
io

na
l

C
on

te
xt Conversational

Query

Figure 5.5: Indexing and document/passage expansion approaches (top half). Retrieval,
query rewriting and query expansion and re-ranking (bottom half).

As explained before, the re-ranking models developed aim to “push” to the top the pas-

sages that are more relevant to a query, basing this analysis on the embeddings generated

by BERT, instead of the simpler functions based on term matching and term frequency

used by typical retrieval models. It is also important to recall that these models are com-

plex and computationally expensive, being this the reason why they are only applied to a

subset of passages retrieved from the index and not the full collection.

We followed the work done by Nogueira and Cho [37] and use the same model and

input format to generate the embeddings. Despite the good results achieved by this

model in the re-ranking task, it does not fully handle the challenges of conversational

search scenarios because of the limitation of the input structure and the topic shifts that

occur during a conversation. So, to overcome these limitations, we implemented exten-

sions to BERT that use the generated embeddings to model the conversational context.

Specifically, we explored RNN, and Memory Networks approaches:

57

CHAPTER 5. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING

• ConvBERT RNN uses a hierarchical structure with BERT generating the sentence

embeddings and an RNN maintaining the conversational context that is propagated

to subsequent turns.

• ConvBERT MemNet uses a memory to store previous turn embeddings, being able

to access them in subsequent turns. This model, in contrast with ConvBERT RNN,

can store each of the previous turns separately since the attention weights are cal-

culated for each memory, making this a more flexible way of representing context.

With these extensions, we attempt to not only place the more relevant passages at the

top but also place at the top the passages that better reflect the context of the conversation

up to that point.

In the next chapter, we show the extensive evaluation conducted to assess the perfor-

mance of the various methods described in this chapter and in Chapters 3 and 4.

58

C
h
a
p
t
e
r

6
Evaluation

In this chapter, we present and discuss the results obtained using the various approaches

described in the previous chapters. We start by defining the task and the dataset used,

as well as present an analysis of the characteristics of this dataset. Then we display and

discuss the results obtained for the first-stage retrieval, query rewriting, and re-ranking

steps, using the different techniques. After this, we analyze the results of the different

techniques, taking into account the specific characteristics of conversational search. To

finalize, we compare our results to the baselines from 2019 and present a summary of the

key findings.

6.1 TREC CAsT Dataset

In order to evaluate the performance of our system, we need a dataset that is suited to

our task. In information retrieval, typical datasets include a list of queries and a list of

corresponding documents that are classified as relevant or non-relevant [13, 36], normally

in a non-exhaustive way (results pooling), i.e, not all documents were judged/annotated.

Conversational search, on the other hand, is a recent topic in information retrieval, so the

creation and amount of data dedicated to this task is still a matter of research.

To evaluate our system, we used the TREC CAsT (Conversational Assistance Track)

2019 dataset [9], that to the best of our knowledge is the only dedicated conversational

search dataset created. TREC CAsT [10] is a track that begun in 2019 and in its first

year, the aim was to create a benchmark for conversational search, focusing on candidate

response (passage) retrieval. Recalling, the conversational search task is defined as: given

a sequence of natural language conversational turns for a topic T, with utterances (u), for

each T = u1, ...ui , ...un, the task is to find relevance passages Pi for each turn ui, satisfying

the user’s information need for that turn with that context. An example of a topic is

59

CHAPTER 6. EVALUATION

provided in table 6.1, where it is possible to see the characteristics of conversational

search, in particular the need for context from previous turns to answer the current

utterance.

Table 6.1: Example of a topic from TREC CAsT 2019 [10].

Topic Number 31

Description: A person is trying to compare and contrast
types of cancer in the throat, esophagus, and lungs.
Turn Utterances

1 What is throat cancer?
2 Is it treatable?
3 Tell me about lung cancer.
4 What are its symptoms?
5 Can it spread to the throat?
6 What causes throat cancer?
7 What is the first sign of it?
8 Is it the same as esophageal cancer?

The complete passage collection is comprised of MS MARCO [36], TREC CAR [13],

and WaPo [22] datasets, amounting to a total number of passages close to 47 million.

Due to an error in the deduplication algorithm of WaPo, the final assessments are only

restricted to MS MARCO and TREC CAR.

6.1.1 Conversation Topics and Relevance Judgments

The topics for TREC CAsT were created using a combination of TREC topics, MS MARCO

conversational sessions [36], and the researchers’ interests in order to exhibit complexity,

diversity, and answerability. The conversational turns were manually created, generally

starting with an introduction to the topic and then progressing to a more exploratory

seeking of information. The questions were also created considering only previous ques-

tions and not system responses. These created conversations mimic the characteristics

of a typical conversation, introducing coreference, omission, and comparisons between

subtopics.

Researchers created 30 training topics and 50 evaluation topics, each with about 10

turns. Also provided are the queries rewritten (resolved) to include all of the information

needed for the current turn, basically turning the task into a non-conversational task.

These resolved queries can be used as an upper bound in terms of results when compared

to the original (raw) conversational queries.

In total, 5 of the 30 training topics include a relevance assessment using a three-

point relevance scale (0-not relevant, 1-relevant, 2-highly relevant), and since part of the

data is from other datasets some have relevance labels associated, but for questions in a

non-conversational form.

60

6.1. TREC CAST DATASET

In terms of the evaluation data, 20 conversational topics were labeled until turn depth

8 on average. The assessment process for the evaluation set used a TREC style pooling,

where it is created an assessment pool using the two runs marked with the highest priority

from each participant and judged until pool depth 10 by NIST assessors. The relevance

labels are a graded relevance that ranges from 0 (not relevant) to 4 (highly relevant). The

exact meaning of each grade is provided in Figure 6.1.

(4) Fully Meets - The passage is the “perfect” single response for the turn. It focuses on
the subject and contains little extra information.

(3) Highly meets - The passage answers the utterance and is focused on the answer
(i.e., it is a satisfactory answer for a voice assistant). It may contain limited extraneous
information.

(2) Moderately meets - The passage answers the utterance, but is focused on something
related (i.e., it might initially be clear why a voice assistant picked this passage).

(1) Slightly meets - The passage includes some information about the turn but does not
directly answer it. Users will find some useful information in the passage that may lead to
the correct answer, perhaps after additional rounds of conversation (better than nothing).

(0) Fails to meet - The passage is not relevant to the question or is unrelated to the target
query.

Figure 6.1: Relevance values scale according to TREC CAsT [10].

6.1.2 Evaluation Metrics

Regarding the evaluation metrics used in TREC CAsT, the researchers focus primarily on

metrics that evaluate the earlier positions since, in a conversational scenario, one of the

main interests is to provide the best answers first. With this in mind, the official metrics

used to evaluate the participant systems were the nDCG@3 (normalized Discounted

Cumulative Gain at 3), MAP (Mean Average Precision), and MRR (Mean Reciprocal Rank).

6.1.3 Dataset Analysis

To better understand the characteristics of conversational search and the differences be-

tween the training set and the evaluation set, we performed the analysis presented in

table 6.2. The evaluation set contains the original conversational queries and the corefer-

ence resolved queries, which are the same but written in a non-conversational format.

From the analysis, we can see that there are 30 training topics and 50 evaluation

topics, amounting to a total of 269 and 479 turns respectively. In the training set, 13

conversations (43.33%) out of the possible 30 were judged, and 20 (40.50%) out of the

possible 50 were judged in the evaluation set. Concerning the turns in the training set,

120 (44.6%) out of the 269 were judged, and in the evaluation set 194 (40.50%) out of

61

CHAPTER 6. EVALUATION

Table 6.2: TREC CAsT dataset statistical analysis.

Train Set
Evaluation Set

Total
Parameter Conversational Resolved

conversations 30 50 50 80
judged conversations 13 (43.33%) 20 (40%) 20 (40%) 33 (41.25%)
turns 269 479 479 748
judged turns 120 (44.6%) 194 (40.50%) 194 (40.50%) 314 (41.98%)
turns where context is needed 79 (65.83%) 125 (64.43%) 0 (0%) 204 (64.96%)
Avg. # turns 8.96 ± 1.45 9.58 ± 1.20 9.58 ± 1.20 9.35 ± 1.32
Avg. # terms per query 7.33 ± 2.05 7.14 ± 2.01 8.68 ± 2.47 7.21 ± 2.02
Avg. # judged docs per query* 19.99 151.28 151.28 101.11
Avg. # relevant docs per query* 5.33 41.85 41.85 27.89

*considering only judged turns

479. The average number of turns is close to 9 in the training set and close to 10 in the

evaluation set.

It is also important to note that the training and evaluation sets were judged differently,

which justifies the difference between the average number of judged docs per query, and

the average number of relevant docs per query is so high between the two sets.

Another important aspect that characterizes conversational search is the smaller size

of the queries, and this is evidenced by the data when comparing the non-conversational

resolved queries (evaluation set resolved), with 8.68 terms per query, with the queries

both in the training and in the conversational evaluation set with 7.33 and 7.14 terms per

query respectively.

Conversational question classification. We also evaluated all of the judged queries in

both sets and annotated if a question is conversational and only answerable having a

notion of the previous context, showing us that about 65% of queries are conversation,

demonstrating the importance of context in this dataset.

Questions types classification. After the previously described analysis, the focus shifted

to classifying the question types. To do this, each of the queries in the evaluation set was

categorized by 5 volunteers into one of the following categories: Describe, List, Comparison
and Connection, Yes/No, or Compositional (represented in Figure 6.2). After this, we chose

the mode of classification as the final label for the question.

Table 6.3 shows the distribution of queries in the complete evaluation set and by turn

depth. The first evident aspect is the high agreement between annotators when classifying

the type of query, which shows that this task is not particularly difficult for humans. In

terms of the distribution of query types, we see that most queries are of type Describe by

a large margin, followed by List, Comparison and Connection, Yes/No, and Compositional.
The distribution of queries by turn depth is also interesting, showing us that although

most of the time the queries are of type Describe, there is a much wider spread of types

of queries after the first turn. Turns 11 and 12 have very few queries so their influence

62

6.1. TREC CAST DATASET

should not be considered.

The difficulty of answering a question is not always conveyed by the type of question,

but we can empirically think that most of the time the Describe queries will be easier to

answer since concepts are more abundant than the other types. The most difficult queries,

in theory, would be the Comparison and Connection, and Compositional, because in both it

is necessary to have a notion of more than one concept in a single query.

Describe - Seeks a brief, general description or summary of the subject. When there is
a lot of information about the subject, the highest-quality responses focus on the most
well-known aspects of the subject. Example: Tell me about the Bronze Age collapse.

List questions - Seeks a passage that provides a list. When the system must make choices
they should be popular, well-known, or with the most important elements first. Example:
Who are The Avengers?

Comparison or Connection questions - Seeks passages containing comparisons or con-
nections between the concepts discussed. It should include details of the relationships
between the two, which are also the main focus of the topic. Example: How does Netflix
compare to Amazon Prime Video?

Yes / No questions - Seeks a passage that answers a question and provides a brief justifi-
cation or explanation to support the answer. Example: Is the National Coach Museum in
Lisbon free?

Compositional questions - This type of question can be considered a combination of two
questions. Asking about two aspects of one concept, such as when and why something
happened. Example: What is the Galileo system and why is it important?

Figure 6.2: Type of questions according to TREC CAsT [9].

Table 6.3: Type of query distribution in the evaluation set.

Describe Yes/No List
Comparison

and Connection
Compositional # queries

Total 112 (57.73%) 16 (8.24%) 35 (18.04%) 21 (10.82%) 10 (5.15%) 194
Agreement 92% 94% 83% 94% 82% -

Type of Query by Turn
1 15 (75%) 0 (0%) 3 (15%) 2 (10%) 0 (0%) 20
2 11 (55%) 2 (10%) 5 (25%) 1 (5%) 1 (5%) 20
3 13 (65%) 1 (5%) 4 (20%) 1 (5%) 1 (5%) 20
4 9 (45%) 3 (15%) 4 (20%) 1 (5%) 3 (15%) 20
5 8 (40%) 4 (20%) 4 (20%) 2 (10%) 2 (10%) 20
6 11 (55%) 1 (5%) 3 (15%) 3 (15%) 2 (10%) 20
7 14 (70%) 2 (10%) 2 (10%) 2 (10%) 0 (0%) 20
8 10 (50%) 1 (5%) 5 (25%) 4 (20%) 0 (0%) 20
9 10 (58.82%) 1 (5.88%) 3 (17.64%) 3 (17.64%) 0 (0%) 17

10 9 (75%) 1 (8.33%) 1 (8.33%) 0 (0%) 1 (8.33%) 12
11 1 (25%) 0 (0%) 1 (25%) 2 (50%) 0 (0%) 4
12 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1

63

CHAPTER 6. EVALUATION

6.2 Indexing and First-Stage Retrieval Evaluation

The first-stage retrieval is the process used to get the first list of ranked passages. In this

section, we optimize the indexing strategies, as well as the retrieval models.

Before experimenting with the different aspects of indexing and searching the data, it

is important to discuss the information retrieval toolkits that were considered and their

advantages and disadvantages. We experimented with two IR toolkits based on Apache

Lucene1: ElasticSearch2 and Anserini [64].

• ElasticSearch - is an open-source, RESTful, full-text search engine that allows a

user to store large amounts of data and search in real-time. ElasticSearch is a com-

mercial system with a large customer base and a well-documented Python library.

ElasticSearch provides a great amount of features “out-of-the-box” in terms of ana-

lyzers, retrieval models, and search options. One of the disadvantages that we found

in ElasticSearch is that it only allows one retrieval model to be in use at a time for

each field, so in order to query the same index with different retrieval models, we

would need to have the same data indexed multiple times, which in our case due to

large scale of the datasets becomes computationally too expensive. Another missing

feature from ElasticSearch is the lack of pseudo-relevance feedback models, such

as RM3 [32].

• Anserini - is an information retrieval toolkit that aims to bridge the gap between

research and practice by providing wrappers and extensions on top of Lucene to

make it more intuitive. So, Anserini provides a platform that allows researchers to

reproduce and test various baselines with minimum effort. From our experience,

Anserini stands out by the flexibility that it gives to the user. It implements several

ranking algorithms and allows to change between them on the spot. Another im-

portant aspect is the implementation of relevance feedback, in particular RM3, a

model that has been seen to provide solid results [32]. Anserini also has a Python

library to access its Java implementation but it is recent and lacks some features

available in the Java version, particularly indexing. The documentation could also

be improved upon, being necessary to evaluate the code itself in order to use some

of its features.

After comparing both systems, we opted to use Anserini in our experiments, mainly

because of interchangeable retrieval models and focus on reproducible results. Another

reason for our choice was that it has been gaining traction in the research community,

being utilized in various works that we studied such as [37, 39–41].

1https://lucene.apache.org
2https://www.elastic.co

64

https://lucene.apache.org
https://www.elastic.co

6.2. INDEXING AND FIRST-STAGE RETRIEVAL EVALUATION

6.2.1 Document-Passage Parser Results

As explained in Section 3.2.1, the first step is to decide the best approach to index the

collection. In our case, since we will apply a re-ranking step to the first-stage retrieval

results, when indexing, we aim to get the highest recall possible, collecting the greatest

amount of relevant passages to give the re-ranker the greatest chances of success.

Because of the large size of the complete dataset (over 47 million passages), to test the

different indexing strategies, we started by only indexing the MS MARCO dataset since

this is the most represented in TREC CAsT’s relevance judgments. To analyze the results,

we used the Raw (conversational) queries available for both the training and evaluation

sets, and the Manual queries, which correspond to the Raw queries with coreferences

manually resolved by the track organizers, to form non-conversational queries. These

Manual queries are only available for the evaluation set and can be seen as an upper

bound to analyze system performance. For these preliminary experiments, we used the

LMD (Language Model Dirichlet) retrieval model with default parameters (µ=1000).

Table 6.4 shows the recall at 1000 obtained by the different indexing strategies dis-

cussed in Section 3.2.1, on the index that contains only MS MARCO passages, removing

all relevance judgments from TREC CAR and WaPo.

Table 6.4: Recall at 1000 for each method of indexing the MS MARCO dataset in the
evaluation set with 1000 passages retrieved considering only relevance judgments from
MS MARCO using LMD with µ=1000.

Index Containing MS MARCO

Queries
Original

Docs
Indri

Stopwords
Lucene

Stopwords
KStem

KStem and
Lucene Stopwords

Training:
Raw 0.576 0.535 0.544 0.625 0.655

Evaluation:
Raw 0.493 0.483 0.487 0.539 0.548
Manual 0.801 0.791 0.795 0.875 0.884

Analyzing table 6.4, we see that both sets are in line with respect to the results ob-

tained using the different indexing strategies.

When comparing the results of the Raw and Manual queries in the evaluation set, we

observe a big difference in recall. This happens because the Raw queries lack the resolu-

tion of context and so are unable to search for the correct information, demonstrating the

importance of using context and the need for the query rewriting techniques developed.

Concerning the indexing strategies, we can see that only removing stop words doesn’t

improve recall since both stopword removal lists achieved a lower recall when compared

to the original docs. The results also show that the less extensive list of stop words from

Lucene achieves a higher recall than using Indri’s stop words list. Regarding stemming,

we see that it significantly increases recall. This happens because of the increased number

65

CHAPTER 6. EVALUATION

of matches between query words and passage words, seeing that both the terms in the

query and the passage are stemmed to possibly the same term.

Finalizing the analysis of the indexing strategies, we see that the best option for our

data is using a combination of both stemming and stopword removal using the list of

stop words from Lucene.

6.2.2 Retrieval Models Results

After analyzing the different indexing strategies in the previous section, we now focus

on choosing the best retrieval model. For this, we used the complete collection of data

(MS MARCO, TREC CAR, and WaPo) and the best method for indexing the data from the

previous experiment, that used stemming with KStem and stopword removal using the

list of stop words from Lucene.

We tested 3 different algorithms: LMD, LMJM, and BM25. Each one of these al-

gorithms has specific parameters that need to be optimized to achieve the best perfor-

mance (Section 2.4.2). The list of parameters, search space used, and the parameters that

achieved the highest recall in the training set using the Raw queries, are presented in

table 6.5. We chose to optimize recall, since, at retrieval time, our objective is to get as

many relevant passages as possible.

Table 6.5: Tunable parameters for BM25, LMD and LMJM, their search spaces, and the
parameters that achieved the highest recall in the training set using the Raw queries.

Retrieval Model Parameter Search Space Best Parameters

BM25
k1 0.5 - 2.0, step=0.2 1.1
b 0.1 - 0.9, step=0.2 0.3

LMD µ 250 - 2500, step=250 1000
LMJM λ 0.1 - 0.8, step=0.1 0.8

From the experiments conducted, we saw that the parameter that optimizes recall for

LMD is µ=1000, for LMJM is λ=0.8, and for BM25 is k1=1.1 and b=0.3. Table 6.6 shows

the results of applying these retrieval models in the training and evaluation sets.

Table 6.6: Results for LMD, LMJM, and BM25 with 1000 passages retrieved with the
parameters that achieved the highest recall using the Raw queries in the training set.

Index containing MS MARCO / TREC CAR / WaPo
Queries LMD µ=1000 LMJM λ=0.8 BM25 k1=1.1 b=0.3
Training:
Raw 0.565 0.446 0.533
Evaluation:
Raw 0.454 0.389 0.431
Manual 0.820 0.773 0.813

66

6.3. CONVERSATIONAL CONTEXT AS QUERY REWRITING EVALUATION

When comparing the three algorithms, the best-performing one is LMD, followed by

BM25, and finally LMJM with a more significant difference to the other two. This differ-

ence may be explained because LMJM generally has better results with longer queries [67],

which are less common in this dataset. LMD being the best performing method can also

be explained because it is known to work best with shorter queries [67], which in a con-

versational scenario like this are very common.

The results are also in line with the ones obtained in the previous experiment (ta-

ble 6.4) using only part of the dataset, showing the ability to generalize results for a

bigger collection of passages. The decrease in recall in this experiment in relation to

the experiment using only MS MARCO happens because here we are using the entire

collection of passages and relevance judgments.

Another important aspect to point out is the impact of the optimization of parameters

when compared to the results obtained. We analyzed the results using the complete

search space, and found that the best performing methods in terms of recall are all very

close to one another, so the selection of these specific parameters does not seem to be of

the utmost importance.

With these preliminary retrieval results in the remainder of this chapter we will use

LMD with a µ=1000 unless specified.

6.3 Conversational Context as Query Rewriting Evaluation

The task of conversational search is more challenging than simple retrieval, so to maintain

conversational context, we developed various query rewriting techniques, basing these

on the methods described in Chapter 4. In this section, we continue to be interested

in achieving the highest recall possible while also monitoring all of the other metrics

(MAP, MRR, nDCG, and precision) to find the query rewriting techniques that achieve

the best results.

6.3.1 Methods

Table 6.7 shows a summary of the query rewriting techniques developed, as well as the

queries provided by the TREC CAsT 2019 organizers.

6.3.1.1 Query Rewriting with Previous Queries

In a conversation that spans various turns, it is bound to have references to previous

queries, so incorporating previous turns is one of the simplest ways of providing context

as shown in Section 4.2.1.

From the analysis of the TREC CAsT 2019 dataset and the conversations within, we

noted that the first query’s entities are typically the driving force for the topic, being

mentioned in various points. Considering this, we developed the Pref (Prefixing) query

format. This format prefixes the current query with the first query of the conversation.

67

CHAPTER 6. EVALUATION

Table 6.7: Summary of the query rewriting techniques developed.

Query Rewriting Method Description

Raw Raw (original) conversational, queries provided by TREC CAsT.

Manual Queries with manually resolved coreferences performed by TREC CAsT’s organizers
(only available for the evaluation set).

Section 6.3.1.1:

Pref Original queries from TREC CAsT prefixed with the first query of the conversation.

Title Original queries from TREC CAsT prefixed with the title of the conversation.

Section 6.3.1.2:

Coref Queries resolved using AllenNLP [18] replacing all mentions with the first one.

CorefPronoun Queries resolved using AllenNLP [18] replacing only pronouns with the first mention.

Section 6.3.1.2:

Pref+Coref Queries resolved using AllenNLP [18] replacing all mentions with the first one pre-
fixed with the first query of the conversation.

Pref+CorefPronoun Queries resolved using AllenNLP [18] replacing only pronouns with the first mention
prefixed with the first query of the conversation.

Title+Coref Queries resolved using AllenNLP [18] replacing all mentions with the first one pre-
fixed with the title of the conversation.

Title+CorefPronoun Queries resolved using AllenNLP [18] replacing only pronouns with the first mention
prefixed with the title of the conversation.

Section 6.3.1.3:

CorefPronoun+Union Union of each of the previous queries with the current query (multiple queries per
turn), using queries resolved with AllenNLP [18] replacing only pronouns with the
first mention.

CorefPronoun+Full-Union All the text of previous queries and current query concatenated (only one query) using
queries resolved with AllenNLP [18] replacing only pronouns with the first mention.

Section 6.3.1.4:

T5 Queries resolved using a trained T5 [47] model.

Pref+T5 Queries resolved using a trained T5 [47] model prefixed with the first query of the
conversation.

CorefPronoun+T5 Queries resolved using AllenNLP [18] replacing only pronouns with the first mention
and then apply T5 [47] to the resulting query.

T5+Union Union of each of the previous queries with the current query (multiple queries per
turn), using queries resolved with T5 [47].

This is simple but is able to give context to some queries while adding noise to queries

unrelated to the first one.

Also provided in the dataset is a title for each topic. This title gives a general descrip-

tion of the information-seeking intentions during that conversation. We prefixed the title

of the conversation to each query, after the first one, forming the query type Title. This,

in most cases, introduces all of the information needed to decipher the context in the

query, but like Pref, occasionally adds information unrelated to the current query. The

Title approach also has the limitation that in a real conversation a title does not exist, so

this query formulation is specific to this dataset and serves only as a baseline.

6.3.1.2 Resolving Coreferences

In this dataset, as well as in an actual conversation, the use of mentions to previous

entities using pronouns is a recurrent matter. This is a problem for non-conversational

retrieval systems since they have no idea of how to resolve the coreferences to search for

68

6.3. CONVERSATIONAL CONTEXT AS QUERY REWRITING EVALUATION

the relevant information. To solve this, we used the coreference resolution model from

AllenNLP [18] and adapted it to our query rewriting task.

As explained in Section 4.2.2, we applied AllenNLP’s model to the concatenation of

all the queries and used two replacement methods. The first replaces all of the mentions

by the first one Coref (Coreference). The second method, CorefPronoun (Coreference

Pronouns), replaces the mentions by the first one if it is an English Pronoun.

These developed techniques are also compatible with Pref and Title, forming Pref-
+Coref, Pref+CorefPronoun, Title+Coref, and Title+CorefPronoun.

6.3.1.3 Union of Previous Queries

When making a union with previous queries, we consider all of the historical queries

available. Combining this with the previously mentioned methods we developed Coref-
Pronoun+Full-Union and CorefPronoun+Union. In CorefPronoun+Full-Union, we concate-

nate the current query with all of the previous queries, this way the retrieval model has

access to all of the terms, relevant or not, and generates a longer query the longer the

conversation. CorefPronoun-Union, on the other hand, issues multiple queries by con-

catenating the current query with each of the previous turns, resulting in various lists of

ranked passages. We then fuse these lists, choosing the passages that have the highest

retrieval scores, and cut the list to the top-1000 passages without repetition, i.e., when

the same passage appears in more than one list, we keep the one that achieved the highest

score. To speed the search process, we perform the queries to the index in parallel since

the queries are independent of each other.

6.3.1.4 Text-To-Text Transfer Transformer (T5) Model

In this section, we detail the results of fine-tuning the T5 model in the conversational

query rewriting task and describe its usage in TREC CAsT 2019, following the explanation

in Section 4.2.3.

Model Fine-tuning To have a model capable of performing conversational query rewrit-

ing, we followed research conducted by Lin et al. [30] and fine-tuned the model using

the CANARD dataset [15]. In particular, we trained the model using the standard maxi-

mum likelihood, for 4000 steps, using a maximum input sequence length of 512 tokens,

a maximum output sequence length of 64 tokens, a learning rate of 0.0001, batches of

256 sequences, and a beam size of 1 (equivalent to no beam search).

In table 6.8, we show the BLEU-4 scores obtained in CANARD and TREC CAsT

2019 Manual queries. The rows Human and Raw are from [15], the row T5-BASE is

from [30]. The other rows correspond to our implementation, explained in Section 4.2.3,

with the versions of input Utterance-Separated, which separates every historical utterance

with a special token, and Turn-Separated, which separates turns by only inserting the

special token every two historical utterances (query-answer pair). Our results are on par

69

CHAPTER 6. EVALUATION

with [30], being lower in the CANARD dataset and higher in TREC CAsT. We believe that

this difference is related to the use of different input sequences, as the exact method of

constructing the input is not specified in [30].

Table 6.8: BLEU-4 scores for CANARD dev and test sets and for TREC CAsT using the
annotated resolved queries (Manual).

CANARD TREC CAsT
Dev Test Manual Queries

Human [15] 59.92 -
Raw [15] 33.84 47.44 -
T5-BASE [30] 59.13 58.08 75.07

Our implementations:
T5-Utterance-Separated 58.29 56.88 79.43
T5-Turn-Separated 58.48 56.84 79.67

From the analysis of the BLEU-4 scores and the outputs, we can conclude that the

model is performing both coreference and context resolution, approximating the queries

in a conversational format to usual non-conversational queries, as seen in the examples

of table 6.9. Regarding the different input formats, the BLEU-4 scores are similar in

both Utterance-Separated and Turn-Separated input formats, but from now on, when ref-

erencing queries rewritten using T5 we consider the Turn-Separated input format since it

achieved marginally better BLEU-4 scores on the TREC CAsT dataset.

Table 6.9: Example of a conversation from TREC CAsT 2019 training set and the corre-
sponding T5 outputs.

Turn Type of Query Conversational Query

1
Raw What is a physician’s assistant?
T5 Output What is a physician’s assistant?

2
Raw What are the educational requirements required to become one?
T5 Output What are the educational requirements required to become

a physician’s assistant?

3
Raw What does it cost?
T5 Output What does becoming a physician’s assistant cost?

4
Raw What’s the average starting salary in the UK?
T5 Output What’s the average starting salary in the UK for a physician’s assistant?

Usage in Conversational Search After fine-tuning the T5 model, we can use it in our

use case of conversational search to perform query rewriting in context. So after the first

turn, we apply the fine-tuned T5 model to the concatenation of all conversational queries,

and the model outputs the predicted non-conversational query for the current turn. With

this, we created the query rewriting techniques T5 that only uses the T5 generated queries,

Pref+T5 which concatenates the first query to the predicted queries, and T5+Union, which

70

6.3. CONVERSATIONAL CONTEXT AS QUERY REWRITING EVALUATION

is the same as CorefPronoun+Union but uses T5 predicted queries instead of CorefPronoun
predicted queries.

Lastly, after analyzing the outputs of T5, we observed that it sometimes mistakes

similar entities replacing the mention with the wrong coreference as seen in the exam-

ple in Section 4.2.3, so we developed CorefPronoun+T5. In this method, we first apply

the AllenNLP coreference resolution model (replacing only the pronouns), which is an

algorithm specifically created to resolve coreferences, and then we apply the T5 model to

give context to the current query (implicit context) and to resolve missing coreferences

(explicit coreference).

6.3.2 Query Rewriting Results

In table 6.10, we provide an overview of the results obtained with the different query

rewriting methods on the evaluation set.

Table 6.10: Summary of the query rewriting techniques results using LMD with µ=1000
on the evaluation set.

Queries Recall MAP MRR@10 nDCG@3 P@3

Raw 0.454 0.141 0.336 0.167 0.262
Manual 0.820 0.327 0.694 0.406 0.590
Pref 0.667 0.227 0.547 0.284 0.432
Title 0.646 0.224 0.599 0.317 0.472
Coref 0.573 0.179 0.445 0.238 0.360
CorefPronoun 0.619 0.203 0.486 0.258 0.380
Pref+Coref 0.670 0.218 0.540 0.281 0.420
Pref+CorefPronoun 0.715 0.246 0.571 0.304 0.462
Title+Coref 0.663 0.220 0.576 0.305 0.459
Title+CorefPronoun 0.703 0.247 0.626 0.338 0.505
CorefPronoun+Full-Union 0.623 0.178 0.528 0.255 0.389
CorefPronoun+Union 0.737 0.216 0.557 0.278 0.430
T5 0.697 0.251 0.597 0.322 0.474
Pref+T5 0.679 0.231 0.576 0.304 0.470
CorefPronoun+T5 0.733 0.251 0.596 0.331 0.484
T5+Union 0.689 0.222 0.541 0.281 0.437

The first thing we can observe in table 6.10 is that all query rewriting methods had

the desired effect, improving on the results of the original conversational queries (Raw).

With this, the results moved closer to the upper bound corresponding to the manually-

rewritten queries (Manual), although as we can see, there is still a large difference between

them.

Pref and Title are very simple approaches but proved to be useful, even getting better

results than Coref and CorefPronoun because the model in these last two is not able to

71

CHAPTER 6. EVALUATION

detect all of the coreferences. As we expected CorefPronoun was also better than Coref
due to only replacing the mention when it is a pronoun and so minimizes mistakes.

The combination Pref+Coref, Pref+CorefPronoun, Title+Coref, and Title+CorefPronoun
further improved on the results by combining both coreference resolution and concate-

nation of previous queries. Title+CorefPronoun in specific was one of the best methods in

most metrics but is not generalizable to a real system.

The techniques based on union provided mixed results. CorefPronoun+Full-Union
was one of the worst performing methods because of the long queries and excessive

noise provided by unrelated terms. On the other hand, CorefPronoun+Union was the

best performing technique in terms of recall with 0.737, because it combines coref-

erence resolution with previous queries, while also eliminating passages where the re-

trieval score is low thanks to the fusion algorithm. Albeit this improvement in recall,

CorefPronoun+Union does not surpass Pref+Coref, Pref+CorefPronoun, Title+Coref, and

Title+CorefPronoun in most of the other metrics, due to the fact that CorefPronoun+Union
is a recall maximization technique and so metrics that focus on the earlier positions of

the rank are not prioritized.

The T5-based approaches provided a good balance between recall and all of the

other metrics. The combination Pref+T5 did not improve on T5 because of the added

noise of the concatenated first query. CorefPronoun+T5 achieved one of the best results in

terms of recall (0.733) while also having good results in all of the other metrics, achieving,

for example, one of the best results in nDCG@3 with 0.331. This at the expense of

applying two models to the query (AllenNLP and T5). Although we obtained good results

with CorefPronoun+Union, the same was not achieved with T5+Union when compared to

the base T5 approach, this may be explained, again by the addition of noise from previous

queries on account that T5 does a better job resolving context than CorefPronoun.

After all these considerations, we decided to use in the following sections a selection

of the best performing algorithms derived from these results. With this, we choose the

Pref+CorefPronoun, CorefPronoun+Union, T5, and CorefPronoun+T5 query rewriting tech-

niques. We left out Title+CorefPronoun despite the good results because we are developing

a conversational system that can adapt to a real conversation where a title is not provided.

To complement the analysis of the various query rewriting methods done in this sec-

tion, in Appendix A, we show the results obtained using the query-expansion method

RM3 [32] and the document expansion methods: doc2query [41] and docTTTTTquery [39].

6.4 Conversational Context-Aware Neural Ranking Evaluation

In the previous sections of this chapter, we focused on achieving a good recall without

disregarding the other metrics. The reason for this was to have the greatest amount of

relevant passages to give the re-ranker better chances of achieving a good result in metrics

that evaluate the top positions of the rank. In this section, we present the evaluation of

the various architectures described in Chapter 5.

72

6.4. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING EVALUATION

We utilized the well known Transformers Library from Huggingface [60] that aims to

combine various transformer-based models in a single library. This library is mainly di-

rected for Pytorch3, although during the development of this thesis it has been expanded

to work with Tensorflow4 as well. Another important note is to run these models on

GPU to speed up prediction. We experimented with both CPU and GPU and obtained

speedups of over 25 times when using GPUs.

6.4.1 BERT Model for Passage Re-ranking Results

As presented in Section 5.2, we use a BERT model with the same format as presented

by Nogueira and Cho [37]. The Huggingface library provides various BERT models

developed for different tasks. In our work, in particular, we used the model architecture

“BertForSequenceClassification” which is comprised of a BERT model with a sequence

classification layer (feed-forward neural network) on top, which has the same structure as

the BERT model defined in [37]. This classification layer is the one responsible for using

the embeddings generated by BERT to classify a passage as relevant or non-relevant.

BERT, as stated before, is pre-trained on large amounts of data in order to generate

word embeddings conditioned by the context to the left and right of a word. These word

embeddings alone without any fine-tuning can be used to solve tasks, but the real power

of BERT is available after performing fine-tuning on the downstream task, which in

our case is passage relevance classification given a query. Due to the large hardware

requirements and time needed to fine-tune a model such as BERT, we opted to use the

fine-tuned BERT model nboost5. This model was trained following [37] on exactly the

same data, the MS MARCO dataset [36] on 12.8 million query-passage pairs.

The use of a re-ranker is accompanied by a new parameter that we call the re-ranking

threshold. The re-ranking threshold is the number of passages that are re-ranked with

respect to the total number of retrieved passages. This is an important parameter to

analyze since a higher threshold will, in theory, provide a better ranking at the expense

of a longer retrieval time, especially when using large models. Although, as stated, we

expect a better ranking, it is important to verify this in practice so as not to spend time

re-ranking more passages without achieving any benefits.

We also experimented with two BERT model sizes: BASE and LARGE. The differences

between BERT BASE and LARGE are evidenced in table 6.11. It is clear to see that BERT

LARGE, as the name implies, is larger, having more than three times the total number

of parameters than the BASE version. Usually, a larger model, i.e., a model with more

parameters, allows for better sentence and word representations, but it also comes with

the tradeoff of an increase in retrieval time and hardware resources.

Table 6.12 shows the results of retrieval with LMD on the complete index (MS MARCO,

TREC CAR, and WaPo), and re-ranking the top 10, 100, and 1000 passages, using the
3https://pytorch.org/
4https://www.tensorflow.org/
5https://huggingface.co/nboost

73

https://pytorch.org/
https://www.tensorflow.org/
https://huggingface.co/nboost

CHAPTER 6. EVALUATION

Table 6.11: BERT BASE and BERT LARGE architecture comparison.

Model Layers Hidden Size Attention Heads Total Parameters

BERT BASE 12 768 12 110 million
BERT LARGE 24 1024 16 340 million

BERT models BASE and LARGE fine-tuned on MS MARCO. The underlines indicate

the best method in each group of queries, and the bold results indicate the best method

overall, excluding manually resolved queries that are always the upper bound of the

experiment.

When re-ranking, we use the same queries at retrieval and re-ranking times, except for

CorefPronoun+Union, because this format issues multiple queries. So, at re-ranking time,

we use the queries generated by our fine-tuned T5 model since these achieved good re-

sults in our previous experiments in metrics that evaluate the earlier positions (MRR@10,

nDCG@3, and P@3). We call this query-rewriting/re-ranking method CorefPronoun-
+Union / T5. As a final note, “(LMD)” in front of a query rewriting method indicates

the absence of a re-ranking step (only retrieval is performed).

Table 6.12: Results of retrieval with LMD using a µ=1000 and re-ranking the top 10, 100,
and 1000 passages using BERT BASE and LARGE fine-tuned on MS MARCO.

Index Containing MS MARCO / TREC CAR / WaPo

BASE LARGE

Retrieval Threshold Recall MAP MRR10 nDCG3 P@3 MAP MRR10 nDCG3 P@3

Raw (LMD) - 0.454 0.141 0.336 0.167 0.262 0.141 0.336 0.167 0.262
Raw 10 0.454 0.147 0.412 0.226 0.330 0.146 0.403 0.223 0.328
Raw 100 0.454 0.167 0.463 0.276 0.382 0.168 0.466 0.282 0.397
Raw 1000 0.454 0.177 0.454 0.277 0.393 0.181 0.456 0.272 0.385
Manual (LMD) - 0.820 0.327 0.694 0.406 0.590 0.327 0.694 0.406 0.590
Manual 10 0.820 0.343 0.812 0.512 0.686 0.342 0.793 0.512 0.692
Manual 100 0.820 0.372 0.874 0.569 0.726 0.378 0.868 0.582 0.757
Manual 1000 0.820 0.379 0.859 0.570 0.748 0.389 0.857 0.577 0.757
Pref+CorefPronoun (LMD) - 0.715 0.246 0.571 0.304 0.462 0.246 0.571 0.304 0.462
Pref+CorefPronoun 10 0.715 0.256 0.676 0.392 0.543 0.255 0.656 0.377 0.541
Pref+CorefPronoun 100 0.715 0.282 0.692 0.418 0.565 0.283 0.706 0.429 0.574
Pref+CorefPronoun 1000 0.715 0.277 0.713 0.412 0.553 0.274 0.702 0.427 0.559
CorefPronoun+Union (LMD) - 0.737 0.216 0.557 0.278 0.430 0.216 0.557 0.278 0.430
CorefPronoun+Union / T5 10 0.737 0.226 0.660 0.384 0.547 0.225 0.650 0.378 0.540
CorefPronoun+Union / T5 100 0.737 0.277 0.773 0.479 0.644 0.279 0.788 0.490 0.644
CorefPronoun+Union / T5 1000 0.737 0.325 0.791 0.502 0.661 0.332 0.799 0.509 0.674
T5 (LMD) - 0.697 0.251 0.597 0.322 0.474 0.251 0.597 0.322 0.474
T5 10 0.697 0.263 0.688 0.409 0.567 0.263 0.674 0.406 0.568
T5 100 0.697 0.297 0.724 0.461 0.611 0.300 0.733 0.472 0.626
T5 1000 0.697 0.303 0.739 0.472 0.630 0.310 0.739 0.475 0.632
CorefPronoun+T5 (LMD) - 0.733 0.251 0.596 0.331 0.484 0.251 0.596 0.331 0.484
CorefPronoun+T5 10 0.733 0.262 0.701 0.426 0.582 0.261 0.690 0.420 0.576
CorefPronoun+T5 100 0.733 0.291 0.757 0.480 0.622 0.289 0.740 0.470 0.630
CorefPronoun+T5 1000 0.733 0.302 0.754 0.487 0.636 0.305 0.749 0.484 0.649

When evaluating the results of table 6.12, the first thing that becomes evident is

that applying a re-ranker improves all metrics except for recall because it uses exactly

the same set of passages in retrieval and re-ranking. We expected these improvements

because of BERT’s ability to judge if a passage is actually relevant to a particular query,

74

6.4. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING EVALUATION

not by term matching, but by having an understanding of the text in the query and

passage.

Taking a closer look at the results of the various query rewriting methods, we see that

they follow a similar trend to the ones obtained in first-stage retrieval (table 6.10). The

best performing queries as expected are the Manual, being evident the importance of

resolving the context and coreferences. The Raw queries, although improved, are still far

from achieving good results keeping in line with previous results.

Pref+CorefPronoun is the one that has the lowest results when we use a threshold of

1000, showing the limitations of this method in giving context to the queries beyond

coreference resolution.

CorefPronoun+Union / T5, which translates to CorefPronoun+Union in retrieval and

T5 in re-ranking, can be viewed as the opposite of Pref+CorefPronoun in terms of results,

being not competitive with smaller thresholds (10, 100), but achieving the best results

in most metrics (excluding Manual queries) when using a threshold of 1000 with an

nDCG@3 of 0.509 using BERT LARGE. These results are explained because CorefPronoun-
+Union in the first-stage retrieval step returns passages in the top positions that are more

varied and can be less important to the current query, so to harness the better recall of

this technique it is important that the re-ranker sees a greater number of passages.

T5 is a method that also improves with the re-ranking threshold, achieving competi-

tive results to all the other query rewriting methods in the various re-ranking thresholds.

CorefPronoun+T5 presents the same trend as T5 but due to the better explicit coreference

resolution provided by AllenNLP (CorefPronoun) is able to achieve better results than T5.

These results also show that the previous sections of recall maximization are trans-

ferable to re-ranking. This also means that we can rely on the re-ranking model to dis-

tinguish relevant from non-relevant passages from a list of varied passages, as shown

in CorefPronoun+Union / T5 queries.

Graphical View of the Re-ranking Threshold. Figures 6.3 and 6.4 show the results

achieved using different re-ranking thresholds on the same query rewriting method for

BERT BASE and LARGE, respectively.

We see that an increase in the re-ranking threshold from 10 to 100 brings improve-

ments in all methods and metrics. When comparing the thresholds 100 and 1000, we

also observe an increase in most methods and metrics, although the difference is smaller.

It is also worth noting that after re-ranking, our rewritten queries get results close to

the non-conversational queries (Manual) only with retrieval, demonstrating that our

combination of both query rewriting and re-ranking is an effective approach to the

conversational search task.

75

CHAPTER 6. EVALUATION

0 10 100 1000
Re-ranking Threshold

0.15

0.20

0.25

0.30

0.35

M
AP

0 10 100 1000
Re-ranking Threshold

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

nD
CG

@
3

Raw
Manual

Pref+CP
CP+Union/T5

T5
CP+T5

Figure 6.3: Results by re-ranking threshold using various queries, with LMD as retrieval
model and BERT BASE model fine-tuned on MS MARCO for re-ranking.

0 10 100 1000
Re-ranking Threshold

0.15

0.20

0.25

0.30

0.35

0.40

M
AP

0 10 100 1000
Re-ranking Threshold

0.2

0.3

0.4

0.5

0.6

nD
CG

@
3

Raw
Manual

Pref+CP
CP+Union/T5

T5
CP+T5

Figure 6.4: Results by re-ranking threshold using various queries, with LMD as retrieval
model and BERT LARGE model fine-tuned on MS MARCO for re-ranking.

BERT BASE vs LARGE in nDCG@3. For an easier comparison between BERT BASE
and LARGE results, in table 6.13, we can see the main evaluation metric of TREC CAsT,

nDCG@3, in both models at different re-ranking thresholds. We observe that in terms

of the queries, both models have a similar behavior. The results are better with a higher

threshold, with the exception of Pref+CorefPronoun in both models when the re-ranking

threshold is increased from 100 to 1000, and in the Raw and Manual queries in the BERT

LARGE model, again when the threshold increases from 100 to 1000.

76

6.4. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING EVALUATION

Table 6.13: nDCG@3 comparison between BERT BASE and LARGE with different queries
and re-ranking thresholds.

Threshold 10 100 1000

Queries / Model BASE LARGE BASE LARGE BASE LARGE

Raw 0.226 0.223 0.276 0.282 0.277 0.272
Manual 0.512 0.512 0.569 0.582 0.570 0.577
Prefix+CorefPronoun 0.392 0.377 0.418 0.429 0.412 0.427
CorefPronoun+Union / T5 0.384 0.378 0.479 0.490 0.502 0.509
T5 0.409 0.406 0.461 0.472 0.472 0.475
CorefPronoun+T5 0.426 0.420 0.480 0.470 0.487 0.484

Comparing the results of the models in each threshold (table 6.13), we see that when

re-ranking the top 10 passages, the results are close to each other because the number of

passages seen by the models is small. When we look at the results in the top-100, LARGE
takes the advantage over BASE in all queries except for CorefPronoun+T5. In the top-1000,

we see mixed results but the best performing method, excluding Manual, as seen before is

CorefPronoun+Union / T5 in both models. In particular, the BERT LARGE model achieved

the best results so far with an nDCG@3 of 0.509.

Summing up, the use of a fine-tuned re-ranker can improve results in both conver-

sational and non-conversational systems. The choice of re-ranking threshold is also

very important, being necessary to understand the subtleties involved. An increase in the

re-ranking threshold and model size will have different impacts depending on the query

rewriting method chosen, while also increasing the retrieval time. So when designing

a system, if we want the best performance in general we use a larger model and set a

larger threshold, if this is not needed and the hardware is not available at a large scale,

we can compromise and use a smaller model/threshold, that, as we saw in table 6.13,

still provides good results.

To complement the results of this section, in appendix B, we show the results obtained

with the BERT LARGE model combined with both query expansion using RM3 [32] and

document/passage expansion via docTTTTTquery [39].

6.4.2 The Importance of Fine-tuning

In the previous experiments, we used a fine-tuned BERT models to perform the re-

ranking. In this section, we analyze the importance of fine-tuning the model in our

task.

Recalling BERT pre-training tasks [12], there is the masked language modeling (MLM)

task, where the objective is to reconstruct the original input given corrupted input, and

the next sentence prediction task (NSP), where the aim is to classify if the next sentence

in the input is, in fact, the next sentence. We can think that the NSP task is relatively close

to question-answering since, after a question, we expect to see an answer, or at the very

77

CHAPTER 6. EVALUATION

least, a concept related to that question. So, to analyze the importance of fine-tuning the

model in the relevance estimation task, we tested with the original pre-trained weights of

the BERT BASE model [12] without any particular fine-tuning to re-rank the top 10, 100,

and 1000 passages. The results are presented in table 6.14 and a graphical representation

can be seen in Figure 6.5.

Table 6.14: Results of retrieval on the evaluation set using LMD with µ=1000 and re-
ranking the top 10, 100, and 1000 passages using BERT BASE Not fine-tuned using the
next sentence prediction (NSP) scores as ranking criterion.

Index Containing MS MARCO / TREC CAR / WaPo

Queries Threshold Recall MAP MRR@10 nDCG@3 P@3

Raw (LMD) - 0.454 0.141 0.336 0.167 0.262
Raw 10 0.454 0.145 0.406 0.198 0.303
Raw 100 0.454 0.129 0.356 0.162 0.258
Raw 1000 0.454 0.092 0.294 0.114 0.189
Manual (Raw) - 0.820 0.327 0.694 0.406 0.590
Manual 10 0.820 0.332 0.752 0.414 0.620
Manual 100 0.820 0.271 0.605 0.294 0.466
Manual 1000 0.820 0.180 0.485 0.205 0.328
Pref+CorefPronoun (LMD) - 0.715 0.246 0.571 0.304 0.462
Pref+CorefPronoun 10 0.715 0.247 0.609 0.305 0.474
Pref+CorefPronoun 100 0.715 0.219 0.561 0.266 0.422
Pref+CorefPronoun 1000 0.715 0.149 0.406 0.169 0.266
CorefPronoun+Union (LMD) - 0.737 0.216 0.557 0.278 0.430
CorefPronoun+Union / T5 10 0.737 0.219 0.591 0.299 0.459
CorefPronoun+Union / T5 100 0.737 0.214 0.640 0.306 0.464
CorefPronoun+Union / T5 1000 0.737 0.171 0.507 0.221 0.341
T5 (LMD) - 0.697 0.251 0.597 0.322 0.474
T5 10 0.697 0.256 0.630 0.329 0.495
T5 100 0.697 0.218 0.539 0.259 0.403
T5 1000 0.697 0.147 0.438 0.177 0.276
CorefPronoun+T5 (LMD) - 0.733 0.251 0.596 0.331 0.484
CorefPronoun+T5 10 0.733 0.256 0.663 0.355 0.520
CorefPronoun+T5 100 0.733 0.222 0.569 0.216 0.422
CorefPronoun+T5 1000 0.733 0.151 0.449 0.186 0.297

Comparing the results of re-ranking the top 10 passages with BERT, with the ones

obtained in original retrieval, we observe a marginal increase in most metrics in most

methods, although the results are lower than the fine-tuned model (table 6.12). When

comparing the results using re-ranking thresholds of 100 and 1000 is when we see a

substantial difference between first-stage retrieval (LMD), BERT not fine-tuned, and

BERT fine-tuned. Using BERT not fine-tuned, the results decrease significantly with a

higher re-ranking threshold, as it can be seen in Figure 6.5, being this is the opposite of

what happens with a fine-tuned model. Adding to this, the results are much lower than

the ones obtained via simple retrieval (LMD). For example, the best performing queries

without re-ranking in terms of nDCG@3 was CorefPronoun+T5 with 0.331, but this value

78

6.4. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING EVALUATION

0 10 100 1000
Re-ranking Threshold

0.10

0.15

0.20

0.25

0.30

M
AP

0 10 100 1000
Re-ranking Threshold

0.10

0.15

0.20

0.25

0.30

0.35

0.40

nD
CG

@
3

Raw
Manual

Pref+CP
CP+Union/T5

T5
CP+T5

Figure 6.5: Results by re-ranking threshold using various queries, with LMD as retrieval
model and BERT BASE model not fine-tuned using the next sentence prediction (NSP)
scores for re-ranking.

decreases with re-ranking thresholds of 100 and 1000 to 0.216 and 0.186 respectively.

We attribute the decrease in performance with the increase in re-ranking threshold to

the difference between the tasks of next sentence prediction (NSP) and relevance estima-

tion. The next sentence prediction task is a much “looser” concept, with the sharing of

words between query and passage a criterion that is almost enough to be a possible next

sentence “in the eyes” of the model, and so the scores of most query-passage pairs were

pushed closer to 1 (maximum value of relevance). This is in direct contrast to what hap-

pens with a fine-tuned model, where some passages are given scores close to 0 (minimum

value of relevance).

Summarizing the results, although it can be useful in some situations to use the

embeddings of the original BERT model, in re-ranking as the results show, it is crucial

to fine-tune the model because it brings better results without any increase in retrieval

time.

6.4.3 Conversational BERT for Passage Re-ranking

In a conversational scenario, we want to keep track of the context and push to the top

the most relevant passages to that particular context. The results of the re-ranking model

shown before only consider the current query and one passage at a time to decide the

relevance of that passage. In this section, we show the results obtained with the re-ranking

architectures developed that use RNNs and Memory Networks to evaluate the relevance

of a passage given a query considering the context stored in their respective components

(Section 5.3).

79

CHAPTER 6. EVALUATION

6.4.3.1 ConvBERT Training

We start by defining the training task as a binary relevance classification task follow-

ing [37] using the cross-entropy loss. This task is used to train the model to classify

passages as relevant or non-relevant given the current query and the conversational con-

text (i.e., previous queries and passages).

Remembering the architecture, ConvBERT is composed of an RNN or Memory Network
on top of a BERT model. In particular, we use the same fine-tuned BERT BASE model

detailed in Section 6.4.1, and train only the top part (RNN or Memory Network), since

the model already does a good job of detecting relevance in non-conversational queries,

and the amounts of data needed to train the model from scratch in the conversational

relevance classification task are not available.

Regarding the data, we used the TREC CAsT training set, that as we saw in Sec-

tion 6.1.3, has about 20 different passages that are classified with 0, 1, or 2 (not relevant,

relevant, very relevant) for each of the 120 classified turns. To use this data in a binary

classification task we simplified the annotations to only 0 and 1, by considering the an-

notation with 1 and 2 as 1, creating a dataset where 80% of the passages are not relevant

for the queries (have label 0). After this pre-processing, for each topic, we create ap-

proximately X conversations by randomly sampling without replacement an annotated

passage for each turn (query), where X is the number of judged passages in the first turn.

This approach creates 259 conversations for training with an average of 10 turns. With

this set of conversations, we considered a batch to be a full conversation topic to guar-

antee that the model sees a full conversation in succession, instead of parts of different

conversations at each gradient calculation step.

To validate our models and choose the parameters, we used a train-validation split of

75%, 25%, using 5-fold cross-validation over the full training set. Since we are working

with conversational topics and turns, when splitting the dataset, we enforce that the same

topics only appears in one of the sets. We then chose the parameters that achieved the

highest average validation F1 score considering all folds.

Regarding the input to the models, we experimented with: the pooled output of the

[CLS] token, and the [CLS] token of the last hidden state of BERT, as explained in Sec-

tion 5.3.1, batch sizes of [1, 2, 4] conversations (each conversation has approximately

10 query-passage pairs), and learning rates [0.01, 0.001, 0.0001] using the Adam opti-

mizer [25].

For ConvBERT RNN, we experimented with the RNN types: LSTM, Bidirectional-
LSTM [20], GRU, and Bidirectional-GRU [2]. In the case of the bidirectional RNNs, we

concatenate the embeddings given by each direction together [42, 52]. To analyze the

importance of context given by the RNNs and Memory networks, we also created a linear

model that applies a one-layer feed-forward neural network on top of the BERT embed-

dings, which we call Linear that is trained on the same data (CAsT 2019).

80

6.4. CONVERSATIONAL CONTEXT-AWARE NEURAL RANKING EVALUATION

The best parameters for the different architectures are presented in table 6.15. It is

particularly interesting to see that the strategy that uses the Last Hidden State of the

[CLS] token always achieved better results. We can attribute this to the Pooled Output

of the [CLS] token being too close to the final task due to being further processed by

another linear layer before being passed to the ConvBERT architectures.

Table 6.15: Parameters that optimized F1 score in the validation set for the ConvBERT
architectures in the binary conversational relevance classification task.

Architecture Pooling Strategy
Batch Size

(# conversations)
Learning Rate

Linear Last hidden [CLS] 1 0.001
LSTM Last hidden [CLS] 1 0.01
Bi-LSTM Last hidden [CLS] 1 0.01
GRU Last hidden [CLS] 1 0.01
Bi-GRU Last hidden [CLS] 1 0.01
Memory Network Last hidden [CLS] 1 0.01

6.4.3.2 ConvBERT Results

Model evaluation follows the same procedure as before using TREC CAsT’s 2019 evalua-

tion set and metrics. Table 6.16 shows the results of the different ConvBERT architectures,

as well as the BASE and Linear models since they use the same BERT model, but without

a notion of context. All methods re-rank the top-1000 passages retrieved by LMD.

In table 6.17, we show only the values of nDCG@3, the main metric of TREC CAsT,

achieved by the various models and queries for easier comparison.

Comparing the architectures trained on the CAsT dataset that make use of the conver-

sational context (ConvBERT architectures) with the simplest approach that uses a single

linear layer on top of BERT’s output trained on the same data (Linear), we see that the

use of context is indeed helpful in all query formulations. For example, in the Coref-
Pronoun+Union / T5 queries, we see that the nDCG@3 achieved by the ConvBERT GRU
model is 3.95% higher than the one obtained with the Linear model. This verifies our

hypothesis that the use of state, in the form of BERT embeddings stored in the hidden

state of the RNN and in the memory of the Memory Network, is important and can be

used in a conversational re-ranking scenario.

When comparing the ConvBERT RNN and ConvBERT MemNet with each other, we

see that in most metrics more than one RNN-based approach surpassed the MemNet
architecture. Although we cannot be certain, we consider that this may happen because

the conversations are not very long, on average 10 turns, and so the RNN’s hidden state

is able to keep the important information to judge the relevance of a passage.

Analyzing the different RNNs architectures, we see that there is not a significant

difference in the best models. Despite this, we generally see that the GRU is better than

the LSTM, and that adding bi-directionality improves only the LSTM results.

81

CHAPTER 6. EVALUATION

Table 6.16: Results on the evaluation set using LMD (µ=1000) and re-ranking the top-
1000 passages with ConvBERT RNN, MemNet, and BERT BASE fine-tuned (MS MARCO).

Index Containing MS MARCO / TREC CAR / WaPo

Queries Re-ranking Model Recall MAP MRR nDCG@3 P@3

Raw (LMD) - 0.454 0.141 0.336 0.167 0.262
Raw Linear 0.454 0.150 0.438 0.255 0.366
Raw LSTM 0.454 0.170 0.457 0.268 0.372
Raw Bi-LSTM 0.454 0.169 0.461 0.282 0.385
Raw GRU 0.454 0.175 0.458 0.281 0.387
Raw Bi-GRU 0.454 0.176 0.444 0.269 0.389
Raw MemNet 0.454 0.159 0.435 0.266 0.372
Raw BASE 0.454 0.177 0.454 0.277 0.393
Manual (LMD) - 0.820 0.327 0.694 0.406 0.590
Manual Linear 0.820 0.348 0.814 0.539 0.716
Manual LSTM 0.820 0.362 0.805 0.526 0.701
Manual Bi-LSTM 0.820 0.359 0.830 0.553 0.719
Manual GRU 0.820 0.375 0.852 0.564 0.732
Manual Bi-GRU 0.820 0.375 0.850 0.537 0.719
Manual MemNet 0.820 0.347 0.839 0.564 0.725
Manual BASE 0.820 0.379 0.859 0.570 0.748
Prefix+CorefPronoun (LMD) - 0.715 0.246 0.571 0.304 0.462
Prefix+CorefPronoun Linear 0.715 0.246 0.643 0.381 0.514
Prefix+CorefPronoun LSTM 0.715 0.261 0.676 0.404 0.549
Prefix+CorefPronoun Bi-LSTM 0.715 0.260 0.697 0.410 0.547
Prefix+CorefPronoun GRU 0.715 0.275 0.692 0.423 0.570
Prefix+CorefPronoun Bi-GRU 0.715 0.272 0.682 0.399 0.538
Prefix+CorefPronoun MemNet 0.715 0.249 0.647 0.400 0.524
Prefix+CorefPronoun BASE 0.715 0.277 0.713 0.412 0.553
CorefPronoun+Union (LMD) - 0.737 0.216 0.557 0.278 0.430
CorefPronoun+Union / T5 Linear 0.737 0.285 0.766 0.481 0.649
CorefPronoun+Union / T5 LSTM 0.737 0.302 0.769 0.482 0.647
CorefPronoun+Union / T5 Bi-LSTM 0.737 0.300 0.778 0.497 0.661
CorefPronoun+Union / T5 GRU 0.737 0.318 0.775 0.500 0.661
CorefPronoun+Union / T5 Bi-GRU 0.737 0.320 0.779 0.487 0.653
CorefPronoun+Union / T5 MemNet 0.737 0.282 0.769 0.494 0.647
CorefPronoun+Union / T5 BASE 0.737 0.325 0.791 0.502 0.661
T5 (LMD) - 0.697 0.251 0.597 0.322 0.474
T5 Linear 0.697 0.275 0.714 0.454 0.612
T5 LSTM 0.697 0.290 0.708 0.440 0.595
T5 Bi-LSTM 0.697 0.287 0.722 0.462 0.609
T5 GRU 0.697 0.298 0.715 0.457 0.607
T5 Bi-GRU 0.697 0.298 0.720 0.445 0.597
T5 MemNet 0.697 0.276 0.720 0.465 0.615
T5 BASE 0.697 0.303 0.739 0.472 0.630
CorefPronoun+T5 (LMD) - 0.733 0.251 0.596 0.331 0.484
CorefPronoun+T5 Linear 0.733 0.275 0.713 0.457 0.616
CorefPronoun+T5 LSTM 0.733 0.287 0.724 0.449 0.603
CorefPronoun+T5 Bi-LSTM 0.733 0.282 0.733 0.467 0.601
CorefPronoun+T5 GRU 0.733 0.298 0.748 0.479 0.620
CorefPronoun+T5 Bi-GRU 0.733 0.298 0.731 0.456 0.613
CorefPronoun+T5 MemNet 0.733 0.267 0.726 0.468 0.599
CorefPronoun+T5 BASE 0.733 0.302 0.754 0.487 0.636

82

6.5. ANALYSIS OF CONVERSATIONAL PATTERNS

Table 6.17: nDCG@3 comparison between the ConvBERT architectures and BERT BASE
with different queries.

Queries / Model LMD Linear LSTM Bi-LSTM GRU Bi-GRU MemNet BASE

Raw 0.167 0.255 0.268 0.282 0.281 0.269 0.266 0.277
Manual 0.406 0.539 0.526 0.553 0.564 0.537 0.564 0.570
Prefix+CorefPronoun 0.304 0.381 0.404 0.410 0.423 0.399 0.400 0.412
CorefPronoun+Union / T5 0.278 0.481 0.482 0.497 0.500 0.487 0.494 0.502
T5 0.322 0.454 0.440 0.462 0.457 0.445 0.465 0.472
CorefPronoun+T5 0.331 0.457 0.449 0.467 0.479 0.456 0.468 0.487

Comparing all the RNN architectures, we believe that the best model is obtained

when using a GRU architecture because it has a smaller embedding size than the Bi-
LSTM and has proven to be more effective in situations where less training data is avail-

able [2].

Concerning the different query types effect on the ConvBERT architectures, the results

are in line with the ones achieved by BERT BASE and LARGE (table 6.12), with Manual
being the best by a large margin, followed by CorefPronoun+Union / T5, CorefPronoun+T5,

T5, and Prefix+CorefPronoun.

Comparing the results of the ConvBERT architectures to the BERT BASE model trained

on MS MARCO, we see that the results are close to each other despite the large difference

in the amount of training data. In more detail, the ConvBERT architectures trained on

CAsT used 2590 conversational query-passage pairs, while the linear layer in the BERT

BASE model trained on MS MARCO saw 12.8 million query-passage pairs [37]. This

also shows that the embeddings generated by BERT are of high quality, being able to

create a comparable model even with much less data. So a future promising step is to try

to use other conversational datasets to obtain more data to train the ConvBERT models.

However, we need to perform adjustments to these datasets since most of them lack the

retrieval aspect of this task, being the objective the extraction of a span of text containing

the answer from a single passage.

To summarize, we showed that the conversational context is helpful, with context-

aware models (ConvBERT) surpassing models without context (Linear) when trained on

the same data, as exemplified by the results achieved with the CorefPronoun+Union /
T5 queries using the ConvBERT GRU architecture when compared to the Linear architec-

ture. This verifies our hypothesis that it is possible to create context-aware re-ranking

models even with limited training data.

6.5 Analysis of Conversational Patterns

While in the previous sections, we examined the methods in a general way, in this sec-

tion, we provide an analysis of the results in the light of the specific characteristics of

conversational search.

83

CHAPTER 6. EVALUATION

6.5.1 Per-Turn results analysis

Due to the conversational aspects of the task, it is important to evaluate the performance

of the different models with respect to the turn depth.

Figure 6.6 shows the metrics by turn depth obtained with different query rewriting

methods using the BERT LARGE model trained on MS MARCO as the re-ranker.

As expected, the Raw queries achieved good results in the first turn since they are

not conversational, but after this results suffer a large decline due to the introduction of

coreference, with most metrics proceeding to decrease the longer the conversation. The

Manual queries, also as expected, are the best-performing ones in most metrics thanks to

the manual resolution of coreferences, turning this into a typical information retrieval

task, and so are not directly affected by turn depth. Pref+CorefPronoun presents a similar

behavior to Raw but with much better results, thanks to the coreference resolution model.

T5 and CorefPronoun+T5 have a similar pattern since the only difference resides in the

coreference resolution model used. The best performing algorithm CorefPronoun+Union
in retrieval with T5 in re-ranking shows good performance until turn depth 6, which

demonstrates the importance of having a good query rewriting method.

1 2 3 4 5 6 7 8
Turn

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
AP

1 2 3 4 5 6 7 8
Turn

0.4

0.5

0.6

0.7

0.8

0.9

M
RR

1 2 3 4 5 6 7 8
Turn

0.2

0.3

0.4

0.5

0.6

nD
CG

@
3

1 2 3 4 5 6 7 8
Turn

0.3

0.4

0.5

0.6

0.7

0.8

P@
3

Raw
Manual

Pref+CP
CP+UNION/T5

T5
CP+T5

Figure 6.6: Results by turn depth using various query types, using LMD as the retrieval
model and BERT LARGE re-ranking in the top-1000.

84

6.5. ANALYSIS OF CONVERSATIONAL PATTERNS

Figure 6.7 shows the metrics by turn depth using the queries CorefPronoun+Union in

retrieval, and T5 in re-ranking, using different re-ranking models.

As seen before, re-ranking has a big influence on performance with LMD (no re-

ranking), achieving lower scores in all metrics by a large margin. The other models

present similar behaviors between themselves since all of them share the same BERT

model. BERT LARGE has better results in most conversational turns with a sharp decline

in turn depth 8, for an unknown reason. BERT BASE and ConvBERT GRU have similar

performance across the conversational turns, and ConvBERT MemNet generally has the

worst results among the re-rankers in most conversational turns, although an increase in

performance is observed in turn depth 8 for MRR, nDCG@3, and P@3, which may be an

indication of the advantages of using Memory Networks in longer conversations.

1 2 3 4 5 6 7 8
Turn

0.15

0.20

0.25

0.30

0.35

0.40

M
AP

1 2 3 4 5 6 7 8
Turn

0.4

0.5

0.6

0.7

0.8

0.9

M
RR

1 2 3 4 5 6 7 8
Turn

0.2

0.3

0.4

0.5

0.6

nD
CG

@
3

1 2 3 4 5 6 7 8
Turn

0.3

0.4

0.5

0.6

0.7

0.8

P@
3

LMD
BERT BASE

BERT LARGE
ConvBERT GRU

ConvBERT MemNet

Figure 6.7: Results by turn depth using various re-ranking models, using as query rewrit-
ing method CorefPronoun+Union in retrieval and T5 in re-ranking.

6.5.2 Per-Question type analysis

Following the dataset analysis and query classification in Section 6.1.3, we investigate the

performance of the different methods given a query type.

Figure 6.8 shows the results of using the BERT LARGE re-ranking model with different

query rewriting methods by type of query. The query types considered were: Describe,

Yes/No, List, Comparison and Connection, and Compositional, as explained in Figure 6.2.

The value inside parentheses indicates the number of turns with that query type.

85

CHAPTER 6. EVALUATION

Unexpectedly, one of the best performing query types is the Compositional, which in

theory, are the most complex. We attribute this to the shortage of these queries in the

dataset and that most of them (80%) are not conversational. Yes/No was the query type

that achieved the lowest scores, this is interesting since these are theoretically the most

basic kind of answers, showing that retrieving just a yes/no type of answer from a dataset

containing passages can be a difficult task.

Describe
(97)

Yes/No
(15)

List
(34)

Comparison
Connection

(18)

Compositional
(9)

Query Type

0.0

0.1

0.2

0.3

0.4

0.5

M
AP

Raw Manual CP+UNION_T5

Describe
(97)

Yes/No
(15)

List
(34)

Comparison
Connection

(18)

Compositional
(9)

Query Type

0.0

0.2

0.4

0.6

0.8

M
RR

Raw Manual CP+UNION_T5

Describe
(97)

Yes/No
(15)

List
(34)

Comparison
Connection

(18)

Compositional
(9)

Query Type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

nD
CG

@
3

Raw Manual CP+UNION_T5

Describe
(97)

Yes/No
(15)

List
(34)

Comparison
Connection

(18)

Compositional
(9)

Query Type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P@
3

Raw Manual CP+UNION_T5

Figure 6.8: Results by query type using various query rewriting methods, using LMD as
the retrieval model and BERT LARGE re-ranking in the top-1000.

In Figure 6.9, we present the results by query type, using different models with the

same query CorefPronoun+Union in retrieval and T5 in re-ranking. The query type with

the best performance was Compositional, and the worst performance was Yes/No for the

same reasons enumerated before. In terms of the model’s performance per query type,

LMD is far from the results of the re-ranking models in all query types. ConvBERT
GRU achieved results close to the BERT BASE model in most query types, except the

List queries. The context-aware model even achieved better results in the Compositional
queries in MRR and nDCG@3, in the Describe queries in nDCG@3, and in the Yes/No

86

6.6. COMPARISON TO TREC CAST 2019 BASELINES

queries in nDCG@3 and P@3, despite using less training data.

Describe
(97)

Yes/No
(15)

List
(34)

Comparison
Connection

(18)

Compositional
(9)

Query Type

0.0

0.1

0.2

0.3

0.4

M
AP

LMD BERT BASE ConvBERT GRU

Describe
(97)

Yes/No
(15)

List
(34)

Comparison
Connection

(18)

Compositional
(9)

Query Type

0.0

0.2

0.4

0.6

0.8

M
RR

LMD BERT BASE ConvBERT GRU

Describe
(97)

Yes/No
(15)

List
(34)

Comparison
Connection

(18)

Compositional
(9)

Query Type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

nD
CG

@
3

LMD BERT BASE ConvBERT GRU

Describe
(97)

Yes/No
(15)

List
(34)

Comparison
Connection

(18)

Compositional
(9)

Query Type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P@
3

LMD BERT BASE ConvBERT GRU

Figure 6.9: Results by query type using various re-ranking models, using as query rewrit-
ing method CorefPronoun+Union in retrieval and T5 in re-ranking.

6.6 Comparison to TREC CAsT 2019 Baselines

In this section, we compare the performance of our system to the performance of the

baselines submitted to TREC CAsT 2019 [10].

Table 6.18 shows the best models developed in this thesis and compares them to the

best models submitted to TREC CAsT 2019 [10]. The first lines represent the performance

of the Raw conversational queries, with and without BERT LARGE re-ranking, and serve

as a lower-bound.

With respect to the baselines, we present the results of:

• clacBase [4] - uses AllenNLP coreference resolution [27] and a fine-tuned BM25

model with pseudo-relevance feedback.

87

CHAPTER 6. EVALUATION

• ilps-bert-feat1 [57] - uses language modeling and expansion with RM3. A BERT

model is used to encode the passages and obtain a score. The final score is achieved

by linearly combining the BERT score and the unsupervised ranker’s score.

• pgbert [10] - uses a trained GPT-2 Transformer model to rewrite queries and a

BERT-based re-ranking model.

• HistoricalQE [63] - uses a query expansion algorithm based on session and query

words together with a BERT LARGE model for re-ranking. This was the best per-

forming method in TREC CAsT 2019.

The developed methods we present are the ones that achieved the highest nDCG@3 in first-

stage retrieval, with and without T5 query rewriting, which corresponds to LMD with

Pref+CorefPronoun and CorefPronoun+T5 queries, and the best models with re-ranking,

with and without conversational context, represented by BERT BASE, LARGE, and the

ConvBERT GRU architecture. The last lines show the results of the Manual rewritten

queries (upper-bound) with and without BERT LARGE re-ranking.

Table 6.18: Comparison between the developed methods and the TREC CAsT 2019 [10]
baselines on the evaluation set.

Queries
Re-ranking

Model
Recall P@3 MAP MRR nDCG@3

Conversational Queries
Raw (LMD) - 0.454 0.262 0.141 0.342 0.167
Raw BERT LARGE 0.454 0.385 0.181 0.459 0.272

TREC CAsT 2019 Baselines
clacBase [4] - - - 0.246 0.640 0.360
ilps-bert-feat1 [57] BERT LARGE - - 0.260 0.614 0.377
pgbert [10] BERT LARGE - - 0.269 0.665 0.413
HistoricalQE [63] BERT LARGE - - 0.267 0.715 0.436

Developed Methods
Pref+CorefPronoun (LMD) - 0.715 0.462 0.246 0.578 0.302
CorefPronoun+T5 (LMD) - 0.733 0.484 0.251 0.602 0.331
CorefPronoun+Union / T5 ConvBERT GRU 0.737 0.661 0.318 0.777 0.500
CorefPronoun+Union / T5 BERT BASE 0.737 0.661 0.325 0.793 0.502
CorefPronoun+Union / T5 BERT LARGE 0.737 0.674 0.332 0.801 0.509

Manual Baselines
Manual (LMD) - 0.820 0.590 0.327 0.698 0.406
Manual BERT LARGE 0.820 0.757 0.389 0.858 0.577

The results show the need for a query rewriting method evidenced by the low scores

in all metrics achieved by the Raw conversational queries. All the query rewriting meth-

ods developed brought an improvement in results, especially with the introduction of

the T5 query rewriting model, achieving an nDCG@3 of 0.331 with CorefPronoun+T5,

even without a re-ranking step.

88

6.7. SUMMARY

With the previous experiments, we created strong first-stage retrieval baselines,

that with the introduction of a BERT-based re-ranker, were able to surpass the state-

of-the-art systems from CAsT 2019. In particular, our ConvBERT GRU model using the

queries CorefPronoun+Union / T5 surpassed state-of-the-art by a large margin, achieving

an nDCG@3 of 0.500. Showing that it is possible to create context-aware re-rankers

that achieve good performance even with limited training data. Our best results were

obtained using the BERT LARGE model and CorefPronoun+Union / T5 queries, achiev-

ing an nDCG@3 of 0.509, 0.073 nDCG@3 points higher than the best model in TREC

CAsT 2019, which was HistoricalQE with 0.436.

6.7 Summary

In this chapter, we performed an extensive evaluation of all the components of the conver-

sational system implemented. In Figure 6.10, we can see an overview of the components

of the system.

Conversational
Query

Original
Documents

Pseudo-Relevance
Feedback (RM3) Retrieval Model

Original
Documents

Index

First Stage
Ranking

Re-ranked
Documents

Stopword
Removal

Stemming

doc2query

docTTTTTquery

Document ParserDocument Expansion

Retrieval Model

BM25

LMD

LMJM

Conversational
Query Rewriting

Query Expanion

Concatenation
and Union

Coreference
Resolution

T5

BERT
Passage Ranking

ConvBERT
RNN

ConvBERT
MemNet

Re-ranking Model

C
on

ve
rs

at
io

na
l

C
on

te
xt

Figure 6.10: Complete architecture and pipeline of the system developed. In each box it is
possible to apply none or various algorithms. Indexing and document/passage expansion
approaches are done offline (top half). Query rewriting and expansion, retrieval and
re-ranking are performed online (bottom half).

The top half describes the offline methods responsible for the creation of the index. In

particular, passage expansion via pre-trained models, and the document-passage parser:

• Document-passage parser (Section 6.2.1) - We experimented with different stop

word lists and with stemming. We found that the best results are achieved with a

combination of a shorter list of stop words and stemming. Stemming, in particular,

was very important to improve recall, making it easier to discover relevant passages

by reducing the vocabulary mismatch between the query and passage terms.

• Document/passage expansion (appendices A and B) - We tested the models doc2-

query [41] and docTTTTTquery [39]. Both are expensive to compute due to the large

size of the passage collection, but this calculation is only performed once before

89

CHAPTER 6. EVALUATION

indexing, so retrieval time is not significantly increased. In the results, docTTTT-

Tquery surpassed doc2query by its ability to generate more diverse questions. De-

spite this, both models did not bring a substantial improvement in performance.

The bottom half of the Figure shows the online portion of the system:

• Conversational query rewriting (Section 6.3.2) - We explored diverse methods,

from simple concatenation with previous queries to neural models such as Al-

lenNLP [18] and T5 [47]. The simple concatenation and union strategies proved to

be effective in improving recall but add irrelevant terms to the query that may nega-

tively influence performance. The AllenNLP model also showed good performance

by resolving the coreferences in the query but lacks the ability to resolve implicit

context, which in the conversational search setting is very important. From all these

methods, the best performing model was our fine-tuned T5 model, being able to

resolve explicit and implicit context.

• Retrieval models (Section 6.2.2) - We tested established information retrieval mod-

els: BM25 [51], LMD, and LMJM [67], and showed that LMD was the best perform-

ing one in this dataset. This is consistent with previous knowledge that stated that

LMD works best for shorter queries [67], which in a conversation are very common.

• Query Expansion with pseudo-relevance feedback (appendices A and B) - After

the first search with the retrieval model, we tested with RM3 [32] to expand the

query terms. This approach showed small improvements in most cases, however,

the retrieval time was increased due to creating a longer query and performing a

second search over the index.

• Re-ranking models (Section 6.4) - We used state-of-the-art re-rankers using the

BERT model [12] trained in a relevance classification task [37]. In Section 6.4.3,

we also extended BERT to use the conversational context via two new architectures

based on RNNs [2, 20] and Memory Networks [54, 59] that showed that the context

of the conversation is present in the conversational utterances and embeddings,

surpassing a linear model trained on the same data. When combining the re-ranking

models implemented with the query rewriting methods developed, we were able to

surpass state-of-the-art when compared to TREC CAsT 2019 baselines [10]. These

results proved the effectiveness of the recall maximization step done in the first-

stage retrieval and the power of the new pre-trained models both in conversation

query rewriting [18, 30] and in re-ranking [37, 40].

90

C
h
a
p
t
e
r

7
Conclusions and Future Work

7.1 Conclusions

In this thesis, we studied and implemented the various components of a conversational

search system. The goal of this system is to provide a more natural interaction with the

user by allowing the user to formulate sequences of natural language queries to retrieve

information about open topics.

We specifically tackled the conversational search task as a context tracking task, where

the context can be seen in both previous queries and system answers. To model this, we

explored various ways of tracking the context via query rewriting and contextual re-

ranking approaches. In particular, we propose a three-stage architecture composed by

query rewriting, retrieval, and re-ranking.

For query rewriting, we used previous queries as context to create non-conversational

queries to allow search using traditional information retrieval components. We explored

simple concatenation-based approaches that yielded some improvements over the origi-

nal conversational queries. We also explored deep-neural models, such as AllenNLP’s [18]

coreference resolution model, and a specific conversational query rewriting method based

on the T5 model. We analyzed the performance of AllenNLP and saw that it could only

disambiguate explicit coreferences, hence we fine-tuned a T5 model [30], resulting in a

model that was able to resolve explicit and implicit coreferences.

Regarding the re-ranking component, we explored current state-of-the-art methods

based on the large pre-trained model BERT [12, 37]. We also expanded BERT’s architec-

ture to make use of the conversational context by using its embeddings as input to an

RNN [2, 20] or a Memory Network [54, 59]. We demonstrated the importance of the con-

text with the ConvBERT architectures surpassing a linear model without context trained

on the same data. We also showed that it is possible to use a context-based architecture in

91

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

a re-ranking scenario, producing results similar to a basic BERT model while only being

trained on conversational data, which at this time is very limited.

Hence, from a research point of view, the key takeaways are as follows:

• Conversational Query Rewriting - Rewriting the user utterance using the conver-

sation context is critical. We tested different query rewriting approaches, and T5

delivered the most significant boost in performance when combined with a corefer-

ence resolution model and with the previous queries in the conversation.

• BERT embeddings can be used to capture conversational context - The proposed

context-aware re-ranking models showed that modeling the sequence of BERT em-

beddings throughout the conversation results in an improvement of 3.95% over a

linear model.

Besides the scientific contributions, the other key achievements are the following:

• Thorough evaluation of state-of-the-art methods - Using the recently developed

conversational search dataset TREC CAsT [10], we were able to assess the perfor-

mance of the various components, allowing for an extensive evaluation of the char-

acteristics of conversational search.

• State-of-the-art results on the TREC CAsT 2019 dataset - The complete architec-

ture achieved state-of-the-art results in TREC CAsT 2019 [10], mainly due to the

better query rewriting performance of the fine-tuned T5 model, which allowed the

search of more relevant passages that can then be re-ranked by the more complex

model.

• Participation in conferences - We implemented a system to participate in TREC

CAsT 2020 and had one paper accepted to ECIR 2021 and another currently under

review.

7.2 Publications

7.2.1 TREC CAsT 2020 Submission

With all the work done in this thesis using TREC CAsT’s 2019 dataset, we submitted our

system’s runs and a paper titled: “NOVA at TREC 2020 Conversational Assistance Track” to

TREC CAsT 2020 [9].

The dataset in 2020 is only composed of the MS MARCO [36] and TREC CAR [13]

datasets, removing WaPo [22] due to a deduplication error. Concerning the queries,

there are 24 new topics available with the respective raw (conversational) and manually

resolved queries, along with the queries resolved by an algorithm developed by the track

organizers. Also available in this year’s edition is a possible answer (passage) retrieved

for each query that can be used as the conversational context for upcoming turns.

92

7.3. IMPACT OF CONVERSATIONAL SEARCH IN IR

Another important change is the introduction of queries about previous answers (pas-

sages) retrieved, which makes the task more challenging and closer to a real conversation.

7.2.2 Papers Submitted

The system and results obtained in this thesis were also used in two papers:

• “Open-Domain Conversational Search Assistant with Transformers” [16] accepted in

ECIR 20211 details the development of a conversational search assistant composed

by 4 main components: (1) query rewriting, (2) retrieval, (3) re-ranking, and (4)

answer summarization.

• “Knowledge-driven Answer Generation for Conversational Search”, details a conversa-

tional search assistant in which the answer summarization takes into account the

most salient entities of a particular conversation, and is currently under review.

7.3 Impact of Conversational Search in IR

In our modern and connected everyday lives, the search for information is one of the most

basic actions. Introducing conversational features to IR is a step forward in allowing a

more natural interaction with intelligent agents. It is also applicable in diverse markets,

such as e-commerce, voice assistants, and others. As such, in the upcoming years, it is

expected that conversational search will be just as integrated into our lives as searching

for information using a typical search engine like Google.

7.4 Future work

Despite the good results in TREC CAsT 2019, we believe that there is still room for

improvement. In particular, there are several topics we would like to explore:

• Conversation context of passages - query rewriting methods can also make use

of the context in the passages retrieved. This would be done by using a model

capable of perceiving the more relevant words in the passages returned, similar to

an attention mechanism [12, 55, 56], and use them when in the appropriate moment

to rewrite the user’s query.

• Long conversations - we observed that the performance decreases by turn depth,

and although it is optimistic to assume that this is an easily solvable problem, we

believe that there are still ways to address this, such as asking clarification questions

to ensure that the information being retrieved is relevant to the user [1, 62].

1https://www.ecir2021.eu/accepted-papers/

93

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

• Re-ranking models - with the emergence of new architectures based on pre-trained

models every year, there is a possibility to experiment with different models to

achieve better results [31, 47, 65]. As an example of this, in [38] is presented an

adaption of the sequence-to-sequence model T5 to the passage re-ranking task [38].

Another problem that we encountered was that the size of the conversation may not

fit entirely in the model, limitation that is being addressed with new architectures

based on large pre-trained autoregressive models [65].

• Conversational data augmentation - the conversational re-ranking architectures

developed would benefit from more training data, so an adaptation of conversa-

tional question-answering datasets [3, 50] to use in the conversational search task

is also an avenue for future work.

• Summarized answers - there is also the possibility of using text summarization

models to generate a single informative answer from the passages retrieved [28, 47].

This is yet another next step in allowing for a more natural interaction with the

system and is very appropriate for conversational systems, where we want quick

interactions with minimum effort on the user’s side to search for the correct infor-

mation.

94

Bibliography

[1] M. Aliannejadi, H. Zamani, F. Crestani, and W. B. Croft. “Asking Clarifying Ques-

tions in Open-Domain Information-Seeking Conversations.” In: Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019. ACM, 2019, pp. 475–484.

doi: 10.1145/3331184.3331265.

[2] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio. “Learning Phrase Representations using RNN Encoder-Decoder

for Statistical Machine Translation.” In: Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL. ACL, 2014,

pp. 1724–1734. doi: 10.3115/v1/d14-1179.

[3] E. Choi, H. He, M. Iyyer, M. Yatskar, W. Yih, Y. Choi, P. Liang, and L. Zettlemoyer.

“QuAC: Question Answering in Context.” In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 -
November 4, 2018. Association for Computational Linguistics, 2018, pp. 2174–2184.

doi: 10.18653/v1/d18-1241.

[4] C. L. A. Clarke. “WaterlooClarke at the TREC 2019 Conversational Assistant

Track.” In: Proceedings of the Twenty-Eighth Text REtrieval Conference, TREC 2019,
Gaithersburg, Maryland, USA, November 13-15, 2019. Vol. 1250. NIST Special

Publication. National Institute of Standards and Technology (NIST), 2019. url:

https://trec.nist.gov/pubs/trec28/papers/WaterlooClarke.C.pdf.

[5] J. S. Culpepper, F. Diaz, and M. D. Smucker. “Research Frontiers in Information

Retrieval: Report from the Third Strategic Workshop on Information Retrieval in

Lorne (SWIRL 2018).” In: SIGIR Forum 52.1 (2018), pp. 34–90. doi: 10.1145/

3274784.3274788.

[6] Z. Dai and J. Callan. “Context-Aware Sentence/Passage Term Importance Esti-

mation For First Stage Retrieval.” In: CoRR abs/1910.10687 (2019). arXiv: 1910.

10687.

95

https://doi.org/10.1145/3331184.3331265
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.18653/v1/d18-1241
https://trec.nist.gov/pubs/trec28/papers/WaterlooClarke.C.pdf
https://doi.org/10.1145/3274784.3274788
https://doi.org/10.1145/3274784.3274788
https://arxiv.org/abs/1910.10687
https://arxiv.org/abs/1910.10687

BIBLIOGRAPHY

[7] Z. Dai and J. Callan. “Deeper Text Understanding for IR with Contextual Neural

Language Modeling.” In: Proceedings of the 42nd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR 2019, Paris, France,
July 21-25, 2019. ACM, 2019, pp. 985–988. doi: 10.1145/3331184.3331303.

[8] Z. Dai, C. Xiong, J. Callan, and Z. Liu. “Convolutional Neural Networks for Soft-

Matching N-Grams in Ad-hoc Search.” In: Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey,
CA, USA, February 5-9, 2018. ACM, 2018, pp. 126–134. doi: 10.1145/3159652.

3159659.

[9] J. Dalton, C. Xiong, and J. Callan. The TREC Conversational Assistance Track (CAsT).
Jan. 2020. url: http://www.treccast.ai/.

[10] J. Dalton, C. Xiong, and J. Callan. “TREC CAsT 2019: The Conversational Assis-

tance Track Overview.” In: CoRR abs/2003.13624 (2020). arXiv: 2003.13624.

[11] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M. F. Moura, D. Parikh, and D.

Batra. “Visual Dialog.” In: CoRR abs/1611.08669 (2016). arXiv: 1611.08669.

[12] J. Devlin, M. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidi-

rectional Transformers for Language Understanding.” In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers). Association for Computational

Linguistics, 2019, pp. 4171–4186. doi: 10.18653/v1/n19-1423.

[13] L. Dietz, B. Gamari, and J. Dalton. TREC CAR 2.1: A Data Set for Complex Answer
Retrieval. July 2018. url: http://trec-car.cs.unh.edu.

[14] E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston. “Wizard of Wikipedia:

Knowledge-Powered Conversational agents.” In: CoRR abs/1811.01241 (2018).

arXiv: 1811.01241.

[15] A. Elgohary, D. Peskov, and J. L. Boyd-Graber. “Can You Unpack That? Learning to

Rewrite Questions-in-Context.” In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November
3-7, 2019. Association for Computational Linguistics, 2019, pp. 5917–5923. doi:

10.18653/v1/D19-1605.

[16] R. Ferreira, M. Leite, D. Semedo, and J. Magalhaes. “Open-Domain Conversational

Search Assistant with Transformers.” In: Advances in Information Retrieval - 43nd
European Conference on IR Research, ECIR 2021, Lucca, Italy, March 28-April 1, 2021,
Proceedings. Lecture Notes in Computer Science. Springer, 2021. arXiv: 2101.

08197 [cs.IR].

96

https://doi.org/10.1145/3331184.3331303
https://doi.org/10.1145/3159652.3159659
https://doi.org/10.1145/3159652.3159659
http://www.treccast.ai/
https://arxiv.org/abs/2003.13624
https://arxiv.org/abs/1611.08669
https://doi.org/10.18653/v1/n19-1423
http://trec-car.cs.unh.edu
https://arxiv.org/abs/1811.01241
https://doi.org/10.18653/v1/D19-1605
https://arxiv.org/abs/2101.08197
https://arxiv.org/abs/2101.08197

BIBLIOGRAPHY

[17] J. Gao, M. Galley, and L. Li. “Neural Approaches to Conversational AI.” In: Pro-
ceedings of ACL 2018, Melbourne, Australia, July 15-20, 2018, Tutorial Abstracts.
Association for Computational Linguistics, 2018, pp. 2–7. doi: 10.18653/v1/P18-

5002.

[18] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu, M. E. Peters,

M. Schmitz, and L. Zettlemoyer. “AllenNLP: A Deep Semantic Natural Language

Processing Platform.” In: CoRR abs/1803.07640 (2018). arXiv: 1803.07640.

[19] J. Guo, Y. Fan, Q. Ai, and W. B. Croft. “A Deep Relevance Matching Model for

Ad-hoc Retrieval.” In: CoRR abs/1711.08611 (2017). arXiv: 1711.08611.

[20] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory.” In: Neural Comput.
9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

[21] H. Huang, E. Choi, and W. Yih. “FlowQA: Grasping Flow in History for Con-

versational Machine Comprehension.” In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,

2019. url: https://openreview.net/forum?id=ByftGnR9KX.

[22] S. Huang, D. Harman, and I. Soboroff. TREC Washington Post Corpus. Dec. 2019.

url: https://trec.nist.gov/data/wapost/.

[23] Y. Ju, F. Zhao, S. Chen, B. Zheng, X. Yang, and Y. Liu. “Technical report on Conversa-

tional Question Answering.” In: CoRR abs/1909.10772 (2019). arXiv: 1909.10772.

[24] D. Jurafsky and J. H. Martin. Speech and Language Processings 3rd ed. draft. Oct.

2019. url: https://web.stanford.edu/~jurafsky/slp3/edbook_oct162019.

pdf.

[25] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.” In: 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. 2015. url: http://arxiv.org/

abs/1412.6980.

[26] V. Lavrenko and W. B. Croft. “Relevance-Based Language Models.” In: SIGIR 2001:
Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, September 9-13, 2001, New Orleans, Louisiana,
USA. ACM, 2001, pp. 120–127. doi: 10.1145/383952.383972.

[27] K. Lee, L. He, M. Lewis, and L. Zettlemoyer. “End-to-end Neural Coreference

Resolution.” In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017.

Association for Computational Linguistics, 2017, pp. 188–197. doi: 10.18653/v1/

d17-1018.

97

https://doi.org/10.18653/v1/P18-5002
https://doi.org/10.18653/v1/P18-5002
https://arxiv.org/abs/1803.07640
https://arxiv.org/abs/1711.08611
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=ByftGnR9KX
https://trec.nist.gov/data/wapost/
https://arxiv.org/abs/1909.10772
https://web.stanford.edu/~jurafsky/slp3/edbook_oct162019.pdf
https://web.stanford.edu/~jurafsky/slp3/edbook_oct162019.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/383952.383972
https://doi.org/10.18653/v1/d17-1018
https://doi.org/10.18653/v1/d17-1018

BIBLIOGRAPHY

[28] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov,

and L. Zettlemoyer. “BART: Denoising Sequence-to-Sequence Pre-training for

Natural Language Generation, Translation, and Comprehension.” In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020. Association for Computational Linguistics, 2020, pp. 7871–

7880. url: https://www.aclweb.org/anthology/2020.acl-main.703/.

[29] C.-Y. Lin. “ROUGE: A Package for Automatic Evaluation of Summaries.” In: Text
Summarization Branches Out. Barcelona, Spain: Association for Computational

Linguistics, July 2004, pp. 74–81. url: https://www.aclweb.org/anthology/

W04-1013.

[30] S. Lin, J. Yang, R. Nogueira, M. Tsai, C. Wang, and J. Lin. “Conversational Question

Reformulation via Sequence-to-Sequence Architectures and Pretrained Language

Models.” In: CoRR abs/2004.01909 (2020). arXiv: 2004.01909.

[31] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,

and V. Stoyanov. “RoBERTa: A Robustly Optimized BERT Pretraining Approach.”

In: CoRR abs/1907.11692 (2019). arXiv: 1907.11692.

[32] Y. Lv and C. Zhai. “A comparative study of methods for estimating query language

models with pseudo feedback.” In: Proceedings of the 18th ACM Conference on Infor-
mation and Knowledge Management, CIKM 2009, Hong Kong, China, November 2-6,
2009. ACM, 2009, pp. 1895–1898. doi: 10.1145/1645953.1646259.

[33] D. Metzler and W. B. Croft. “Linear feature-based models for information re-

trieval.” In: Inf. Retr. 10.3 (2007), pp. 257–274. doi: 10.1007/s10791- 006-

9019-z.

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed Rep-

resentations of Words and Phrases and their Compositionality.” In: Advances in
Neural Information Processing Systems 26: 27th Annual Conference on Neural Infor-
mation Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States. 2013, pp. 3111–3119. url: http://papers.

nips.cc/paper/5021-distributed-representations-of-words-and-phrases-

and-their-compositionality.

[35] G. Neff and P. Nagy. “Talking to Bots: Symbiotic Agency and the Case of Tay.”

In: International Journal of Communication 10 (Oct. 2016), pp. 4915–4931. url:

https://ijoc.org/index.php/ijoc/article/view/6277.

[36] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng.

“MS MARCO: A Human Generated MAchine Reading COmprehension Dataset.”

In: CoRR abs/1611.09268 (2016). arXiv: 1611.09268.

[37] R. Nogueira and K. Cho. “Passage Re-ranking with BERT.” In: CoRR abs/1901.04085

(2019). arXiv: 1901.04085.

98

https://www.aclweb.org/anthology/2020.acl-main.703/
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://arxiv.org/abs/2004.01909
https://arxiv.org/abs/1907.11692
https://doi.org/10.1145/1645953.1646259
https://doi.org/10.1007/s10791-006-9019-z
https://doi.org/10.1007/s10791-006-9019-z
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://ijoc.org/index.php/ijoc/article/view/6277
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1901.04085

BIBLIOGRAPHY

[38] R. Nogueira, Z. Jiang, R. Pradeep, and J. Lin. “Document Ranking with a Pretrained

Sequence-to-Sequence Model.” In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings, EMNLP 2020, Online Event, 16-
20 November 2020. Association for Computational Linguistics, 2020, pp. 708–718.

url: https://www.aclweb.org/anthology/2020.findings-emnlp.63/.

[39] R. Nogueira and J. Lin. “From doc2query to docTTTTTquery.” In: (2019). url:

https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_

docTTTTTquery-v2.pdf.

[40] R. Nogueira, W. Yang, K. Cho, and J. Lin. “Multi-Stage Document Ranking with

BERT.” In: CoRR abs/1910.14424 (2019). arXiv: 1910.14424.

[41] R. Nogueira, W. Yang, J. Lin, and K. Cho. “Document Expansion by Query Predic-

tion.” In: CoRR abs/1904.08375 (2019). arXiv: 1904.08375.

[42] Y. Ohsugi, I. Saito, K. Nishida, H. Asano, and J. Tomita. “A Simple but Effective

Method to Incorporate Multi-turn Context with BERT for Conversational Machine

Comprehension.” In: CoRR abs/1905.12848 (2019). arXiv: 1905.12848.

[43] K. Papineni, S. Roukos, T. Ward, and W. Zhu. “Bleu: a Method for Automatic

Evaluation of Machine Translation.” In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA.

ACL, 2002, pp. 311–318. doi: 10.3115/1073083.1073135.

[44] Y. Qiao, C. Xiong, Z. Liu, and Z. Liu. “Understanding the Behaviors of BERT in

Ranking.” In: CoRR abs/1904.07531 (2019). arXiv: 1904.07531.

[45] C. Qu, L. Yang, M. Qiu, W. B. Croft, Y. Zhang, and M. Iyyer. “BERT with History

Answer Embedding for Conversational Question Answering.” In: Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019. ACM, 2019, pp. 1133–

1136. doi: 10.1145/3331184.3331341.

[46] C. Qu, L. Yang, M. Qiu, Y. Zhang, C. Chen, W. B. Croft, and M. Iyyer. “Atten-

tive History Selection for Conversational Question Answering.” In: Proceedings of
the 28th ACM International Conference on Information and Knowledge Management,
CIKM 2019, Beijing, China, November 3-7, 2019. ACM, 2019, pp. 1391–1400. doi:

10.1145/3357384.3357905.

[47] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,

and P. J. Liu. “Exploring the Limits of Transfer Learning with a Unified Text-to-

Text Transformer.” In: J. Mach. Learn. Res. 21 (2020), 140:1–140:67. url: http:

//jmlr.org/papers/v21/20-074.html.

99

https://www.aclweb.org/anthology/2020.findings-emnlp.63/
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://arxiv.org/abs/1910.14424
https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/1905.12848
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/1904.07531
https://doi.org/10.1145/3331184.3331341
https://doi.org/10.1145/3357384.3357905
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

BIBLIOGRAPHY

[48] P. Rajpurkar, R. Jia, and P. Liang. “Know What You Don’t Know: Unanswerable

Questions for SQuAD.” In: Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018,
Volume 2: Short Papers. Association for Computational Linguistics, 2018, pp. 784–

789. doi: 10.18653/v1/P18-2124.

[49] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. “SQuAD: 100, 000+ Questions

for Machine Comprehension of Text.” In: Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016. The Association for Computational Linguistics, 2016,

pp. 2383–2392. doi: 10.18653/v1/d16-1264.

[50] S. Reddy, D. Chen, and C. D. Manning. “CoQA: A Conversational Question An-

swering Challenge.” In: Trans. Assoc. Comput. Linguistics 7 (2019), pp. 249–266.

url: https://transacl.org/ojs/index.php/tacl/article/view/1572.

[51] S. Robertson and H. Zaragoza. “The Probabilistic Relevance Framework: BM25 and

Beyond.” In: Foundations and Trends in Information Retrieval 3.4 (2009), pp. 333–

389. issn: 1554-0669. doi: 10.1561/1500000019.

[52] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau. Building End-To-End
Dialogue Systems Using Generative Hierarchical Neural Network Models. 2016. arXiv:

1507.04808 [cs.CL].

[53] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma, J. G. Simonsen, and J. Nie. “A Hierarchi-

cal Recurrent Encoder-Decoder for Generative Context-Aware Query Suggestion.”

In: Proceedings of the 24th ACM International Conference on Information and Knowl-
edge Management, CIKM 2015, Melbourne, VIC, Australia, October 19 - 23, 2015.

ACM, 2015, pp. 553–562. doi: 10.1145/2806416.2806493.

[54] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. “End-To-End Memory Net-

works.” In: Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada. 2015, pp. 2440–2448. url: http://papers.nips.cc/paper/5846-

end-to-end-memory-networks.

[55] A. Summerville, J. Hashemi, J. Ryan, and W. Ferguson. “How to Tame Your Data:

Data Augmentation for Dialog State Tracking.” In: Proceedings of the 2nd Work-
shop on Natural Language Processing for Conversational AI. Online: Association

for Computational Linguistics, July 2020, pp. 32–37. doi: 10.18653/v1/2020.

nlp4convai-1.4.

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. “Attention is All you Need.” In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA. 2017, pp. 5998–6008. url: http:

//papers.nips.cc/paper/7181-attention-is-all-you-need.

100

https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/d16-1264
https://transacl.org/ojs/index.php/tacl/article/view/1572
https://doi.org/10.1561/1500000019
https://arxiv.org/abs/1507.04808
https://doi.org/10.1145/2806416.2806493
http://papers.nips.cc/paper/5846-end-to-end-memory-networks
http://papers.nips.cc/paper/5846-end-to-end-memory-networks
https://doi.org/10.18653/v1/2020.nlp4convai-1.4
https://doi.org/10.18653/v1/2020.nlp4convai-1.4
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need

BIBLIOGRAPHY

[57] N. Voskarides, D. Li, A. Panteli, and P. Ren. “ILPS at TREC 2019 Conversational As-

sistant Track.” In: Proceedings of the Twenty-Eighth Text REtrieval Conference, TREC
2019, Gaithersburg, Maryland, USA, November 13-15, 2019. Vol. 1250. NIST Special

Publication. National Institute of Standards and Technology (NIST), 2019. url:

https://trec.nist.gov/pubs/trec28/papers/UvA.ILPS.C.pdf.

[58] N. Voskarides, D. Li, P. Ren, E. Kanoulas, and M. de Rijke. “Query Resolution

for Conversational Search with Limited Supervision.” In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (2020). doi: 10.1145/3397271.3401130.

[59] J. Weston, S. Chopra, and A. Bordes. “Memory Networks.” In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings. 2015. url: http://arxiv.org/abs/1410.

3916.

[60] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,

R. Louf, M. Funtowicz, and J. Brew. “HuggingFace’s Transformers: State-of-the-

art Natural Language Processing.” In: CoRR abs/1910.03771 (2019). arXiv: 1910.

03771.

[61] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. “End-to-End Neural Ad-hoc

Ranking with Kernel Pooling.” In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo,
Japan, August 7-11, 2017. ACM, 2017, pp. 55–64. doi: 10.1145/3077136.3080809.

[62] J. Xu, Y. Wang, D. Tang, N. Duan, P. Yang, Q. Zeng, M. Zhou, and X. Sun. “Asking

Clarification Questions in Knowledge-Based Question Answering.” In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP
2019, Hong Kong, China, November 3-7, 2019. Association for Computational Lin-

guistics, 2019, pp. 1618–1629. doi: 10.18653/v1/D19-1172.

[63] J. Yang, S. Lin, C. Wang, J. Lin, and M. Tsai. “Query and Answer Expansion from

Conversation History.” In: Proceedings of the Twenty-Eighth Text REtrieval Confer-
ence, TREC 2019, Gaithersburg, Maryland, USA, November 13-15, 2019. Vol. 1250.

NIST Special Publication. National Institute of Standards and Technology (NIST),

2019. url: https://trec.nist.gov/pubs/trec28/papers/CFDA_CLIP.C.pdf.

[64] P. Yang, H. Fang, and J. Lin. “Anserini: Enabling the Use of Lucene for Information

Retrieval Research.” In: Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August
7-11, 2017. ACM, 2017, pp. 1253–1256. doi: 10.1145/3077136.3080721.

[65] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le. “XLNet:

Generalized Autoregressive Pretraining for Language Understanding.” In: CoRR
abs/1906.08237 (2019). arXiv: 1906.08237.

101

https://trec.nist.gov/pubs/trec28/papers/UvA.ILPS.C.pdf
https://doi.org/10.1145/3397271.3401130
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1410.3916
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.1145/3077136.3080809
https://doi.org/10.18653/v1/D19-1172
https://trec.nist.gov/pubs/trec28/papers/CFDA_CLIP.C.pdf
https://doi.org/10.1145/3077136.3080721
https://arxiv.org/abs/1906.08237

BIBLIOGRAPHY

[66] Y. Yeh and Y. Chen. “FlowDelta: Modeling Flow Information Gain in Reasoning for

Conversational Machine Comprehension.” In: Proceedings of the 2nd Workshop on
Machine Reading for Question Answering, MRQA@EMNLP 2019, Hong Kong, China,
November 4, 2019. Association for Computational Linguistics, 2019, pp. 86–90.

doi: 10.18653/v1/D19-5812.

[67] C. Zhai and J. Lafferty. “A Study of Smoothing Methods for Language Models

Applied to Ad Hoc Information Retrieval.” In: Proceedings of the 24th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’01. New Orleans, Louisiana, USA: Association for Computing Machinery,

2001, pp. 334–342. isbn: 1581133316. doi: 10.1145/383952.384019.

102

https://doi.org/10.18653/v1/D19-5812
https://doi.org/10.1145/383952.384019

A
p
p
e
n
d
i
x

A
Query and Document Expansion Retrieval

Results

A.1 Query Expansion Using Pseudo-Relevance Feedback

In this section, we discuss the usage and results obtained using the pseudo-relevance

feedback technique RM3 [26] in combination with the developed query rewriting tech-

niques. As explained in Section 4.3, RM3 is composed of 3 parameters: α (alpha), the

weight attributed to original query terms, the number of feedback documents, and the

number of feedback terms used to expand the query.

We used Anserini’s implementation of RM3 [64] and experimented with different

parameters in the index which contains the full collection composed of MS MARCO,

TREC CAR, and WaPo. The search space of each parameter and the parameters that

obtained the highest recall in the training set using the Pref+CorefPronoun queries are

provided in table A.1.

Table A.1: Tunable parameters for RM3, the search spaces considered, and the parameters
that achieved the highest recall in the training set using the Pref+CorefPronoun queries.

RM3 - Parameters Search Space Best Parameters

Number of Feedback Documents 5 - 45 step=10 15
Number of Feedback Terms 5 - 20 step=5 20
Original Query Weight (α) 0.6 - 0.9 step=0.1 0.9

Table A.2 presents the results in the evaluation set of applying RM3 with the fine-

tuned parameters to the various query rewriting methods. With the use of RM3 our

main goal was to improve recall by performing a search with other relevant terms, that in

turn would provide us with different passages. The results show that RM3 was useful for

103

APPENDIX A. QUERY AND DOCUMENT EXPANSION RETRIEVAL RESULTS

improving recall, but it was also advantageous in improving other metrics across multiple

query rewriting techniques, with the added benefit of not needing any input from the

user. With RM3, we achieved the best results in terms of recall with CorefPronoun+Union
achieving 0.759, closing the gap to the manually coreference resolved queries (Manual)
with 0.820 and 0.834, with and without RM3 respectively.

Table A.2: Results in the evaluation set of the query rewriting techniques using RM3
with parameters α=0.8, number feedback documents=5, and number feedback terms=15
using LMD with µ=1000.

Index Containing MS MARCO / TREC CAR / WaPo
Queries RM3 Recall MAP MRR@10 nDCG@3 P@3

Raw 7 0.454 0.141 0.336 0.167 0.262
Raw 3 0.463 0.153 0.344 0.176 0.272
Manual 7 0.820 0.327 0.694 0.406 0.590
Manual 3 0.834 0.343 0.706 0.408 0.593
Pref+CorefPronoun 7 0.715 0.246 0.571 0.304 0.462
Pref+CorefPronoun 3 0.712 0.262 0.581 0.315 0.482
CorefPronoun+Union 7 0.737 0.216 0.557 0.278 0.430
CorefPronoun+Union 3 0.759 0.254 0.588 0.302 0.476
T5 7 0.697 0.251 0.597 0.322 0.474
T5 3 0.717 0.271 0.602 0.332 0.474
CorefPronoun+T5 7 0.733 0.251 0.596 0.331 0.484
CorefPronoun+T5 3 0.744 0.274 0.608 0.345 0.495

It is also important to note that although pseudo-relevance feedback improves the

results in this situation, this may not be the case in others because the insertion of other

terms can deviate the topic and introduce noise or irrelevant terms to the current query.

Another important aspect is the retrieval time. RM3 increases retrieval time because it

needs to perform two searches over the same collection, which in our case is quite large

(in total over 47 million passages), so it is necessary to weigh if the improvements justify

the increase in retrieval time.

A.2 Query Expansion and Document/Passage Expansion

A.2.1 Document/Passage Expansion

To expand the passages, we used the two neural-based techniques previously discussed in

Section 3.2.2: doc2query [41], and docTTTTTquery [39]. As stated before, expanding pas-

sages using neural approaches is time-consuming and expensive to compute, especially

in our case where the collection is of several million passages. Because of this, we used the

publicly available predicted queries for the MS MARCO dataset for both doc2query and

docTTTTTquery, expanding each passage with 5 predicted queries. In these experiments,

we did not expand TREC CAR because of its large size (29 million passages), and because

104

A.2. QUERY EXPANSION AND DOCUMENT/PASSAGE EXPANSION

of the GPU and TPU requirements of the models. On WaPo, we didn’t expand any of

its passages since this collection was removed from the final assessment in TREC CAsT

2019 [10].

In the previous section, we saw that it is possible to use RM3 to improve all metrics in

most cases at the expense of an increase in retrieval time. Thanks to the flexibility of the

various methods, we can evaluate the combination of both RM3 and passage expansion.

Table A.3 shows the full overview of the multiple query rewriting techniques and RM3

with the parameters optimized in the previous experiment in the original and expanded

indices. The bold values indicate the best results achieved, excluding the Manual queries,

and the underlines indicate the best performing combination per query rewriting method.

Considering only the different expanded indices with no query expansion (no RM3),

we see that doc2query achieves mixed results in all query rewriting methods and met-

rics. Using docTTTTTquery, on the other hand, generally achieves better results in most

methods and metrics.

From the results of combining RM3 and document expansion, we can conclude that

this can be effective since we obtained the highest results in the metrics: Recall, MRR@10,

nDCG@3, and P@3 with the combination of RM3 and docTTTTTquery. In particular, the

combination of RM3 and docTTTTTquery achieved the best value for recall with 0.766

using CorefPronoun+Union, coming a long way from the original conversational queries

(Raw) with a recall of 0.454 using the most basic setup.

Summing up, in this section, we showed that not only is it possible to use the passage

expansion technique docTTTTTquery to improve the results of the first-stage retrieval but

that we can also combine it with query expansion, in particular RM3 (pseudo-relevance

feedback), to further improve these results. As always, when developing a system, we

need to have a critical view of the different aspects. Specifically, it is important to see if

expanding passages, which is done before indexing but is very time consuming (despite

it only being performed once), and the use of a pseudo-relevance model, which increases

retrieval time, are required to achieve the best results.

105

APPENDIX A. QUERY AND DOCUMENT EXPANSION RETRIEVAL RESULTS

Table A.3: Results in the evaluation set of the query rewriting methods with RM3 and
passage expansion in the evaluation set using LMD with µ=1000. The passage expansion
models use 5 predicted queries.

Index Containing MS MARCO / TREC CAR / WaPo

Queries
MS MARCO
Expansion

RM3 Recall MAP MRR@10 nDCG@3 P@3

Raw 7 7 0.454 0.141 0.336 0.167 0.262
Raw 7 3 0.463 0.153 0.344 0.176 0.272
Raw doc2query 7 0.461 0.135 0.346 0.173 0.262
Raw doc2query 3 0.467 0.146 0.355 0.185 0.281
Raw docTTTTTquery 7 0.471 0.142 0.360 0.190 0.279
Raw docTTTTTquery 3 0.480 0.153 0.371 0.199 0.285
Manual 7 7 0.820 0.327 0.694 0.406 0.590
Manual 7 3 0.834 0.343 0.706 0.408 0.593
Manual doc2query 7 0.817 0.311 0.710 0.396 0.570
Manual doc2query 3 0.828 0.319 0.718 0.411 0.576
Manual docTTTTTquery 7 0.822 0.314 0.716 0.419 0.592
Manual docTTTTTquery 3 0.825 0.322 0.721 0.419 0.588
Pref+CorefPronoun 7 7 0.715 0.246 0.571 0.304 0.462
Pref+CorefPronoun 7 3 0.712 0.262 0.581 0.315 0.482
Pref+CorefPronoun doc2query 7 0.720 0.234 0.590 0.305 0.472
Pref+CorefPronoun doc2query 3 0.721 0.244 0.606 0.316 0.476
Pref+CorefPronoun docTTTTTquery 7 0.725 0.237 0.582 0.304 0.468
Pref+CorefPronoun docTTTTTquery 3 0.722 0.246 0.575 0.308 0.480
CorefPronoun+Union 7 7 0.737 0.216 0.557 0.278 0.430
CorefPronoun+Union 7 3 0.759 0.254 0.588 0.302 0.476
CorefPronoun+Union doc2query 7 0.735 0.210 0.574 0.287 0.437
CorefPronoun+Union doc2query 3 0.758 0.244 0.620 0.324 0.505
CorefPronoun+Union docTTTTTquery 7 0.742 0.210 0.590 0.288 0.436
CorefPronoun+Union docTTTTTquery 3 0.766 0.248 0.603 0.310 0.470
T5 7 7 0.697 0.251 0.597 0.322 0.474
T5 7 3 0.717 0.271 0.602 0.332 0.474
T5 doc2query 7 0.697 0.243 0.619 0.320 0.470
T5 doc2query 3 0.715 0.258 0.635 0.339 0.484
T5 docTTTTTquery 7 0.707 0.247 0.611 0.335 0.493
T5 docTTTTTquery 3 0.720 0.264 0.636 0.357 0.505
CorefPronoun+T5 7 7 0.733 0.251 0.596 0.331 0.484
CorefPronoun+T5 7 3 0.744 0.274 0.608 0.345 0.495
CorefPronoun+T5 doc2query 7 0.733 0.241 0.612 0.327 0.480
CorefPronoun+T5 doc2query 3 0.742 0.257 0.628 0.339 0.499
CorefPronoun+T5 docTTTTTquery 7 0.742 0.245 0.619 0.341 0.493
CorefPronoun+T5 docTTTTTquery 3 0.746 0.261 0.637 0.354 0.499

106

A
p
p
e
n
d
i
x

B
Query and Document Expansion Re-ranking

Results

B.1 Query Expansion and Document/Passage Expansion

Thanks to the modularity and flexibility of the system, in table B.1, we show the results

of applying the pseudo-relevance feedback model RM3 [32], and the passage expansion

method docTTTTTquery [39] in conjunction with the BERT LARGE re-ranking model

explained in Section 6.4.1.

As we saw in appendix A and again in table B.1, RM3 and docTTTTTquery can be

used to improve the recall. When we add re-ranking, we see that RM3 can also be used

to improve other metrics depending on the query used. In particular, the most improved

method with the addition of RM3 was T5, going from an nDCG@3 of 0.475 to 0.486.

With the addition of docTTTTTquery, the results show mostly lower values for most

metrics, especially in MRR@10 and nDCG@3 in the Prefix+CorefPronoun query. This may

be due to the queries that expanded the passages negatively influencing the re-ranker

scores since the BERT model was trained on passages that did not have any type of

expansion.

When combining both RM3 and docTTTTTquery, we see that the results on the metrics

that evaluate the earlier positions are again worse than the ones obtained with BERT

LARGE without any additions.

In summary, although we saw an increase in recall in most query rewriting methods

with the introduction of RM3 and docTTTTTquery, these did not translate in re-ranking

to an increase in metrics that evaluate the earlier positions, which are the main focus

of this task. This may be due to the fine-tuning of the models not accounting for this

expansion. Adding to this, RM3, as explained before, increases retrieval time because

it performs two searches over the full index, so we consider the gain obtained in some

107

APPENDIX B. QUERY AND DOCUMENT EXPANSION RE-RANKING RESULTS

query types not enough to justify the cost.

Table B.1: Results in the evaluation set of query rewriting with RM3 and docTTTTT-
query passage expansion on the MS MARCO dataset, using LMD with µ=1000 and a
BERT LARGE re-ranker trained on MS MARCO in the top-1000 passages. The passage
expansion model uses 5 predicted queries.

Index Containing MS MARCO / TREC CAR / WaPo

Queries
MS MARCO

docTTTTTquery
RM3 Recall MAP MRR@10 nDCG@3 P@3

Raw 7 7 0.454 0.181 0.456 0.272 0.385
Raw 7 3 0.463 0.183 0.461 0.273 0.385
Raw 3 7 0.471 0.183 0.446 0.263 0.383
Raw 3 3 0.480 0.186 0.451 0.267 0.385
Manual 7 7 0.820 0.389 0.857 0.577 0.757
Manual 7 3 0.834 0.395 0.868 0.585 0.765
Manual 3 7 0.822 0.388 0.860 0.582 0.748
Manual 3 3 0.825 0.386 0.855 0.578 0.740
Prefix+CorefPronoun 7 7 0.715 0.274 0.702 0.427 0.559
Prefix+CorefPronoun 7 3 0.712 0.271 0.703 0.428 0.559
Prefix+CorefPronoun 3 7 0.725 0.271 0.648 0.409 0.545
Prefix+CorefPronoun 3 3 0.722 0.267 0.689 0.410 0.551
CorefPronoun+Union / T5 7 7 0.737 0.332 0.799 0.509 0.674
CorefPronoun+Union / T5 7 3 0.759 0.329 0.798 0.513 0.686
CorefPronoun+Union / T5 3 7 0.742 0.331 0.776 0.507 0.674
CorefPronoun+Union / T5 3 3 0.766 0.330 0.775 0.505 0.665
T5 7 7 0.697 0.310 0.739 0.475 0.632
T5 7 3 0.717 0.321 0.753 0.486 0.642
T5 3 7 0.707 0.313 0.725 0.467 0.626
T5 3 3 0.720 0.316 0.723 0.467 0.626
CorefPronoun+T5 7 7 0.733 0.305 0.749 0.484 0.649
CorefPronoun+T5 7 3 0.744 0.306 0.765 0.489 0.653
CorefPronoun+T5 3 7 0.742 0.306 0.744 0.480 0.636
CorefPronoun+T5 3 3 0.746 0.305 0.740 0.479 0.634

108

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context and Motivation
	Problem Definition and Objective
	The ``Anatomy'' of a Conversational Search Agent
	Contributions
	Document Structure

	Related Work
	Dialogue Systems
	Evaluation of Conversational Agents
	Datasets
	Evaluation Metrics

	Pre-trained Transformer Models
	Autoencoder Models
	Autoregressive Models

	Indexing and First-Stage Retrieval
	Indexing
	First-Stage Retrieval

	Re-ranking Models
	Coordinate-Ascent
	Deep Relevance Matching Model
	Kernel-based Matching Models
	BERT-based Ranking Models

	Conversation State Tracking
	Hierarchical Recurrent Encoder-Decoder
	Memory Networks
	Conversational Query Rewriting

	Conversational Systems
	Conversational Question Answering Systems
	Conversational Search Systems

	Critical Summary

	Indexing and First-Stage Retrieval
	Introduction
	Indexing and Document/Passage Expansion
	Document-Passage Parser
	Document/Passage Expansion

	Retrieval Models
	Summary

	Conversational Context as Query Rewriting
	Introduction
	Conversational Query Rewriting
	Query Rewriting with Previous Queries
	Coreference Resolution
	Conversational Query Rewriting using the Text-To-Text Transfer Transformer (T5) Model

	Query Expansion With Pseudo-Relevance Feedback
	Summary

	Conversational Context-Aware Neural Ranking
	Introduction
	BERT Model for Passage Re-ranking
	Conversational BERT for Passage Re-ranking
	ConvBERT RNN
	ConvBERT MemNet

	Summary

	Evaluation
	TREC CAsT Dataset
	Conversation Topics and Relevance Judgments
	Evaluation Metrics
	Dataset Analysis

	Indexing and First-Stage Retrieval Evaluation
	Document-Passage Parser Results
	Retrieval Models Results

	Conversational Context as Query Rewriting Evaluation
	Methods
	Query Rewriting Results

	Conversational Context-Aware Neural Ranking Evaluation
	BERT Model for Passage Re-ranking Results
	The Importance of Fine-tuning
	Conversational BERT for Passage Re-ranking

	Analysis of Conversational Patterns
	Per-Turn results analysis
	Per-Question type analysis

	Comparison to TREC CAsT 2019 Baselines
	Summary

	Conclusions and Future Work
	Conclusions
	Publications
	TREC CAsT 2020 Submission
	Papers Submitted

	Impact of Conversational Search in IR
	Future work

	Bibliography
	Appendices
	Query and Document Expansion Retrieval Results
	Query Expansion Using Pseudo-Relevance Feedback
	Query Expansion and Document/Passage Expansion
	Document/Passage Expansion

	Query and Document Expansion Re-ranking Results
	Query Expansion and Document/Passage Expansion

